检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李治斌 袁立月 丁黔 张淼鑫 王红梅[1] LI Zhibin;YUAN Liyue;DING Qian;ZHANG Miaoxin;WANG Hongmei(College of Construction Engineering,Heilongjiang University,Harbin 150080,China;College of Water Resources and Electric Power,Heilongjiang University,Harbin 150080,China)
机构地区:[1]黑龙江大学建筑工程学院,黑龙江哈尔滨150080 [2]黑龙江大学水利电力学院,黑龙江哈尔滨150080
出 处:《水利科学与寒区工程》2021年第5期51-54,共4页Hydro Science And Cold Zone Engineering
基 金:冻土工程国家重点实验室开放基金(SKLFSE201802,SKLFSE201919)。
摘 要:为了研究固化盐渍土的力学性能,在实验室内配制成人工盐渍土,分析固化剂掺量、温度和加载速率3个影响因素,通过改良土的无侧限抗压试验,得到了48组不同影响因素下人工盐渍土样的强度值。根据所得数据结果,利用BP神经网络建立改良盐渍土的单轴抗压强度预测模型,预测结果误差均小于0.1,且均方根误差为0.027,确定系数为0.985,表明该模型具有良好的预测效果。In order to study the mechanical properties of solidified saline soil,the artificial saline soil was prepared in the laboratory,and the unconfined compressive tests of the improved soil were carried out considering the dosage of curing agent,temperature and loading rate,and the strength values of 48 soil samples under different influencing factors were obtained.According to the results of the obtained data,the BP neural network was used to establish the uniaxial compressive strength prediction model of the improved saline soil.The error of the prediction results was less than 0.1,and the root mean square error was 0.027,and the determination coefficient was 0.985.These showed that the model had good prediction effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.82.96