检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彦粉 魏华[1] 葛纪者 邹洋[1] ZHANG Yan-fen;WEI Hua;GE Ji-zhe;ZOU Yang(Dongguan Polytechnic,Dongguan 523808,China;Wing Fat Printing(Dongguan)Co.,Ltd.,Dongguan 523831,China)
机构地区:[1]东莞职业技术学院,广东东莞523808 [2]永发印务(东莞)有限公司,广东东莞523831
出 处:《包装工程》2021年第19期49-54,共6页Packaging Engineering
基 金:广东省教育厅普通高校青年创新人才类项目(2019GKQNCX005)。
摘 要:目的通过研究遗传算法优化BP神经网络建立自变量与因变量之间的关系,从而对可食用油墨的粘度进行预测和模拟。方法在前期关于可食用油墨的研究基础上,以醋酸浓度、壳聚糖用量、酒精用量、研磨速度为自变量,以配制得到的油墨粘度作为因变量,利用正交实验设计实验,运用BP神经网络结合遗传算法对可食用油墨的粘度进行预测和模拟。结果以正交实验设计得到30组实验数据,利用Matlab 2018a软件中GAOT遗传算法工具箱,经过38次迭代训练,得到收敛精度为10^(-4)的神经网络,粘度的预测值与对应的真实值相对误差介于0.05%~3.7%,拟合度R2值为0.8672,表明该神经网络对可食用油墨的粘度具有较好的预测能力和较高的预测精度。结论遗传算法优化BP神经网络可以用来预测和模拟可食用油墨的粘度,可以将神经网络拓展到可食用油墨其他性能的评价体系中,从而对可食用油墨的生产和应用提供指导性的建议。The work aims to predict and simulate the viscosity of edible ink by studying the genetic algorithm to optimize the Back Propagation(BP) neural network to establish the relationship between the independent variable and the dependent variable. Based on the previous researches on edible inks, the acetic acid concentration, chitosan dosage, alcohol dosage, and grinding speed were used as independent variables, and the obtained viscosity of edible ink as the dependent variable. The experiment was first designed by orthogonal experiments, and then the BP neural network with genetic algorithm was used to predict and simulate the viscosity of edible ink. 30 sets of experimental data were obtained by orthogonal experimental design: by using Genetic Algorithm Optimization Toolbox(GAOT) in Matlab 2018 a software, a neural network with a convergence accuracy of 10^(-4) was obtained after 38 iterative trainings. The relative error between the predicted value of viscosity and the corresponding true value of viscosity was between 0.05% and 3.7%, and the R2 value of the fit was 0.8672, indicating that the BP neural network had excellent predictive ability and high predictive accuracy to predict the viscosity of edible inks. The BP neural network optimized with genetic algorithm can be used to predict and simulate the viscosity of edible inks, and extend the neural network into the evaluation system of other performances of the edible ink, thereby providing guidance for the production and application of the edible ink.
关 键 词:壳聚糖 粘度 可食用油墨 BP神经网络 遗传算法
分 类 号:TB852[一般工业技术—摄影技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7