检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾嘉 Jia Jia(School of Mathematical Sciences,East China Normal University,Shanghai 200241)
出 处:《数学物理学报(A辑)》2021年第5期1270-1282,共13页Acta Mathematica Scientia
摘 要:该文主要研究二维定常超音速Chaplygin气体绕直楔流动,在Radon测度解的定义下得到了Mach数大于1的所有情况解的精确表达式.与多方气体不同,对Chaplygin气体绕流问题,存在Mach数M_(0)^(*),当来流Mach数大于或等于该数时,质量会在楔表面集中,此时,没有Lebesgue意义下的分片光滑解.该文通过极限分析,证明了由Lebesgue积分意义下得到的极限与Radon测度解意义下求得的解是一致的.The purpose of this paper is to investigate the two-dimensional steady supersonic chaplygin gas flows passing a straight wedge.By the definition of Radon measure solution,the accurate expressions are obtained for all cases where the Mach number is greater than 1.It is quite different from the polytropic gas,for the chaplygin gas flows passing problems,there exists a Mach number M0*,when the Mach number of incoming flows is greater than or equal to M0*,the quality will be concentrated on the surface of the straight wedge.At this time,there are not piecewise smooth solutions in the Lebesgue sense.The limit analysis is used to prove that the limit obtained by Lebesgue integral is consistent with the solution obtained in the sence of Radon measure solution.
关 键 词:Chaplygin气体 Radon测度解 RIEMANN问题 高超音速极限
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.132.48