检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑磊 何直蒙 丁海勇 Zheng Lei;He Zhimeng;Ding Haiyong(Tonglu County Meteorological Bureau,Hangzhou 311500,China;School of Remote Sensing and Geomatics Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)
机构地区:[1]浙江省桐庐县气象局,浙江杭州311500 [2]南京信息工程大学遥感与测绘工程学院,江苏南京210044
出 处:《遥感技术与应用》2021年第4期908-915,共8页Remote Sensing Technology and Application
基 金:浙江省杭州市气象局2019气象科技计划项目“基于遥感技术的桐庐县设施农业分布研究”(QX201907);国家自然科学基金项目(41571350)。
摘 要:随着设施农业管理要求的提高,需要提取高分辨率遥感影像中大范围、低密度的塑料大棚空间分布信息作为农业管理和资源分配的依据。以浙江省桐庐县为研究区域,利用高分辨率遥感影像数据,对比分析不同机器学习方法提取塑料大棚的效果。ENVINet 5深度学习架构可以克服标签较少的困难,通过语义学习进行塑料大棚提取和面积估算,总体精度和Kappa系数达到97.84%和0.81;U-net深度学习网络的提取结果中,总体精度和Kappa系数为96.22%和0.79,两种深度学习方法均优于利用支持向量机进行塑料大棚提取的结果。研究表明通过深度学习方法提取高分辨率遥感影像中稀疏分布的塑料大棚有很好的效果,可以为农业经济作物管理、规划和气象保障提供支持。With the increasing requirements of facility agriculture management,it is necessary to extract the spa⁃tial distribution information of plastic greenhouses with large range and low density in high-resolution remote sensing images as the basis for agricultural management and resource allocation.This study takes Tonglu Coun⁃ty,Zhejiang Province as the study area,and uses high-resolution remote sensing images to compare and ana⁃lyze the effect of extracting plastic sheds using different machine learning methods.It was found that the ENVI⁃Net5 deep learning architecture could perform plastic shed extraction and area estimation by small-sample se⁃mantic learning,and the overall accuracy and kappa coefficient reached 97.84%and 0.81;in the extraction re⁃sults of U-net deep learning network,the overall accuracy and kappa coefficient were 96.22%and 0.79,which were better than the plastic shed extraction using support vector machine results.This study shows that the ex⁃traction of sparsely distributed plastic sheds in high-resolution remote sensing images by deep learning has good results and can provide support for agricultural cash crop management,planning,and weather assurance.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222