检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尚千里 田波[2] 李思李[2] 权磊[2] Shang Qian-li;Tian Bo;Li Si-li
机构地区:[1]重庆交通大学土木工程学院,重庆市400074 [2]交通运输部公路科学研究院
出 处:《中外公路》2021年第4期70-75,共6页Journal of China & Foreign Highway
基 金:国家重点研发计划项目(编号:2017YFC0840200)。
摘 要:为探究预测性能更优的沥青路面车辙变形预测模型,更好地捕捉预测过程中基本特征和时序特征的潜在关联性,通过下载并预处理LTPP数据库中与沥青路面车辙相关的路面结构材料、交通荷载、气候环境及路用性能数据,构建一个高质量样本数据集。并使用注意力方法融合BP神经网络和长短期记忆神经网络,建立性能更优的基于深度学习的LSTM-BPNN车辙预测模型。最后将此模型与其他4种常用预测模型进行比对试验,评估该模型的精确性和有效性。结果表明:LSTM-BPNN模型预测性能表现优异,训练集和测试集上的R2分别达到0.821和0.796,能充分捕捉与沥青路面车辙相关的基本特征和时序特征;在比对试验中此模型R^(2)和RMSE均好于其他常用模型;另外此预测模型具有较强的泛化能力,将目标特征和预测特征进行更换,可实现更广泛的应用。
关 键 词:道路工程 车辙预测模型 深度学习 车辙深度 BP神经网络 路用性能
分 类 号:U418.68[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30