检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王升 林琳[1] 陈诚 张杰 史建成 WANG Sheng;LIN Lin;CHEN Cheng;ZHANG Jie;SHI Jiancheng(School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin 132022,China)
机构地区:[1]吉林化工学院信息与控制工程学院,吉林吉林132022
出 处:《吉林化工学院学报》2021年第9期36-40,共5页Journal of Jilin Institute of Chemical Technology
基 金:吉林省自然科学基金(联合基金项目)(YDZJ202101ZYTS189)。
摘 要:为提高风机轴承故障诊断精度,针对含未知类型故障信号的误识别问题,提出一种风机轴承故障诊断新方法.首先,将风机轴承振动信号进行经验小波变换(EWT),对分解得到的固有模态分量(IMF)提取15种时-频域特征,构建特征向量集;然后,通过基尼(Gini)指数评价特征分类能力,构建最优特征集合;最后,采用单类支持向量机(OCSVM)与极限学习机(ELM)组合的层次化混合分类器进行故障诊断.对比单纯采用ELM、SVM分类器,新方法能够更好辨识含未知故障类型的风机轴承故障信号.In order to improve the diagnosis accuracy of wind turbine bearing fault signals,a new fault diagnosis method for wind turbine bearing was proposed to solve the problem of misidentification of unknown fault signals.Firstly,the vibration signals of wind turbine bearings were processed by empirical wavelet transform,and 15 time-frequency domain features were extracted from the decomposed inherent mode components to form a feature vector set.Then,the feature classification ability was evaluated by Gini index,and the optimal feature set was constructed.Finally,a hierarchical hybrid classifier combining single-class support vector machine and extreme learning machine was used for fault diagnosis.Compared with ELM and SVM classifier,the new method can identify the wind motor bearing fault signals with unknown fault types well.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30