检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张大兵[1] 彭智力 段江哗 梁鹏 ZHANG Da-bing;PENG Zhi-li;DUAN Jiang-hua;LIANG Peng(School of Mechanical Engineering,Xiangtan University,Xiangtan 411105,China;Department of Mechanical and Aerospace Engineering,Hong Kong University of Science and Technology,Hong Kong 999077,China)
机构地区:[1]湘潭大学机械工程学院,湖南湘潭411105 [2]香港科技大学机械与航空工程系,香港999077
出 处:《船舶力学》2021年第10期1322-1330,共9页Journal of Ship Mechanics
基 金:湖南省科技厅资助项目(2014FJ3070)。
摘 要:船舶升沉运动预报是主动升沉补偿系统中的重要组成部分。为了满足船舶升沉运动预测的实时性和准确性要求,本文提出了一种混沌理论与增强搜索极限学习机相结合的混合方法(CES-ELM)。在混沌动力系统相空间重构的基础上,采用基于误差最小化的方法生成ELM隐藏节点并不断更新权值;利用优化后的模型参数建立船舶运动预测模型。不同海况下的仿真结果表明,该方法的预测平均绝对百分误差小于10%,与传统的ELM和LSSVM模型相比,该模型能有效提高预测精度和鲁棒性。Ship heaving motion forecasting is an important aspect of the active heave compensation system.To satisfy the real-time characteristics of ship heave motion prediction with high accuracy,a hybrid method that combines chaos theory and extreme learning machine with enhancing search model parameters(CES-ELM)was proposed in this paper.The error-minimization-based method was used to grow ELM’s hidden nodes and unceasingly update weights based on phase space reconstruction of the chaotic dynamical system.Optimized model parameters were used to establish the ship motion forecasting model.The simulation results in different sea conditions indicate that the prediction mean-absolute-percentage error of the proposed method is less than 10%,and that this model can effectively improve the forecast accuracy and robustness in comparison with the traditional ELM and LSSVM.
分 类 号:U667[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7