基于混沌理论和改进极限学习机的船舶升沉预报  被引量:2

Prediction of Ship Heaving Motion Based on Chaos Theory and Improved Extreme Learning Machine

在线阅读下载全文

作  者:张大兵[1] 彭智力 段江哗 梁鹏 ZHANG Da-bing;PENG Zhi-li;DUAN Jiang-hua;LIANG Peng(School of Mechanical Engineering,Xiangtan University,Xiangtan 411105,China;Department of Mechanical and Aerospace Engineering,Hong Kong University of Science and Technology,Hong Kong 999077,China)

机构地区:[1]湘潭大学机械工程学院,湖南湘潭411105 [2]香港科技大学机械与航空工程系,香港999077

出  处:《船舶力学》2021年第10期1322-1330,共9页Journal of Ship Mechanics

基  金:湖南省科技厅资助项目(2014FJ3070)。

摘  要:船舶升沉运动预报是主动升沉补偿系统中的重要组成部分。为了满足船舶升沉运动预测的实时性和准确性要求,本文提出了一种混沌理论与增强搜索极限学习机相结合的混合方法(CES-ELM)。在混沌动力系统相空间重构的基础上,采用基于误差最小化的方法生成ELM隐藏节点并不断更新权值;利用优化后的模型参数建立船舶运动预测模型。不同海况下的仿真结果表明,该方法的预测平均绝对百分误差小于10%,与传统的ELM和LSSVM模型相比,该模型能有效提高预测精度和鲁棒性。Ship heaving motion forecasting is an important aspect of the active heave compensation system.To satisfy the real-time characteristics of ship heave motion prediction with high accuracy,a hybrid method that combines chaos theory and extreme learning machine with enhancing search model parameters(CES-ELM)was proposed in this paper.The error-minimization-based method was used to grow ELM’s hidden nodes and unceasingly update weights based on phase space reconstruction of the chaotic dynamical system.Optimized model parameters were used to establish the ship motion forecasting model.The simulation results in different sea conditions indicate that the prediction mean-absolute-percentage error of the proposed method is less than 10%,and that this model can effectively improve the forecast accuracy and robustness in comparison with the traditional ELM and LSSVM.

关 键 词:升沉运动预测 相空间重构 极限学习机 

分 类 号:U667[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象