陆相页岩储层薄片超分辨率增强方法  

Super-resolution imaging of thin sections for lacustrine shale reservoirs

在线阅读下载全文

作  者:郭超 赵谦平 刘刚 郝世彦 高潮 孙建博 刘超 陈奕奕 Guo Chao;Zhao Qianping;Liu Gang;Hao Shiyan;Gao Chao;Sun Jianbo;Liu Chao;Chen Yiyi(Research Institute,Shaanxi Yanchang Petroleum(Group)Co.,Ltd.,Xi'an,Shaanxi 710065,China;Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation,Xi'an,Shaanxi 710065,China)

机构地区:[1]陕西延长石油(集团)有限责任公司研究院,陕西西安710065 [2]陕西省陆相页岩气成藏与开发重点实验室,陕西西安710065

出  处:《石油与天然气地质》2021年第5期1202-1209,共8页Oil & Gas Geology

基  金:国家科技重大专项(2017ZX05039-002-005)。

摘  要:近年来页岩油气的勘探与开发在全世界领域都取得了很大进展。然而在储层的矿物组分以及孔喉分布等微观物性研究中,经常受困于页岩储层微观尺度的限制,使得传统岩石薄片研究难以满足页岩储层精细化分析的需要。为了能够从原始页岩薄片图像中挖掘出更多储层微观特征,解决传统薄片精细图像在分辨率方面存在的限制与不足的问题,通过引入超分辨率增强技术来提高薄片图像对页岩储层微观特性的描述能力。针对页岩储层特点开发了一套基于生成对抗网络的超分辨率模型,建立了对应的薄片图像损失函数。最后以鄂尔多斯盆地延长组陆相页岩气储层的实际资料作为测试对象,进一步定性、定量地验证并确认了该方法的可用性、准确性以及可靠性。Despite a great progress made in the exploration and development of shale gas and oil in recent years,the study on the pores,organic matter and mineral composition of shale reservoirs at a microscopic scale is still a challenge with thin section analysis for conventional reservoirs.In order to solve this problem,this study introduces a super-resolution technology to improve thin section image quality for revealing micro-characteristics of shale reservoirs.A set of super-resolution models are established based on generative adversarial networks and corresponding content loss functions are also set up for thin-section images.Application of the technology to the processing of actual data from lacustrine shale gas reservoirs in the Yanchang Formation in Ordos Basin has yielded positive results,demonstrating quantitatively and qualitatively its applicability,accuracy and reliability for unconventional reservoir assessment.

关 键 词:微观物性 超分辨率技术 数据增强技术 岩石薄片 页岩储层 鄂尔多斯盆地 

分 类 号:TE135[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象