检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾君宜 吴命利[1] 宋可荐[1] 王琪 JIA Junyi;WU Mingli;SONG Kejian;WANG Qi(School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044)
出 处:《电气技术》2021年第10期1-10,共10页Electrical Engineering
摘 要:牵引网过电压严重影响电气化铁路正常运行,对牵引网过电压进行类型辨识有利于提高牵引供电系统的可靠性。针对牵引网过电压的非线性和不稳定性,本文利用短时傅里叶变换将过电压时域波形转化为二维的时频图;先通过局部特征提取和设置阈值,实现对铁磁谐振过电压的快速识别;再利用卷积神经网络的自学习能力挖掘时频图特征与牵引网过电压信号的深层次关系,实现对机车进出分相、断路器开闭操作过电压和高频谐振过电压的识别。实验结果表明,该方法的准确度在90%以上。Traction network overvoltage affects the normal operation of electrified railways.Identification of traction network overvoltage is helpful to improve the reliability of traction power supply system.In view of the nonlinearity and instability of traction network overvoltage,the short-time Fourier transform is used to convert the time-domain waveform of overvoltage into two-dimensional time-frequency diagram.Fast identification of ferromagnetic resonance overvoltage is realized by feature extraction and threshold setting.Then the self-learning ability of convolutional neural network is used to analyze the deep relationship between the time-frequency diagram characteristics and the overvoltage of traction network.The convolutional neural network realizes the identification of into/out neutral-section overvoltage,vacuum circuit breaker overvoltage and high-frequency resonance overvoltage.The test result shows that the accuracy of this method is over 90%.
分 类 号:U223[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117