检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋自根[1] 张佳彬 覃学标 刘必林[2] 卜心宇 SONG Zigen;ZHANG Jiabin;QIN Xuebiao;LIU Bilin;BU Xinyu(Shanghai Ocean University,College of Information,Shanghai 201306,China;Shanghai Ocean University,College of Marine Sciences,Shanghai 201306,China)
机构地区:[1]上海海洋大学信息学院,上海201306 [2]上海海洋大学海洋科学学院,上海201306
出 处:《渔业现代化》2021年第5期70-78,共9页Fishery Modernization
基 金:国家自然科学基金(12172212);上海市级科技重大专项资助(2021SHZDZX0103);国家重点研发计划(2019YFD0901404);上海市高校特聘教授“东方学者”岗位计划项目(0810000243);上海市科委地方高校能力建设项目(20050501800);远洋渔业科学与技术研究与支撑平台能力提升-前沿科学共享航次项目(A1-3201-19-30046)。
摘 要:为自动化精确获取头足类动物的角质颚色素沉积占比,采用Mask-RCNN深度学习的神经网络模型,实现对角质颚及其色素沉积的图像识别和分割,提出了一种基于面积获取的自动化测量角质颚色素沉积占比新方法。首先对角质颚及其色素沉积进行轮廓标注,将所得结果转化成训练集导入到残差网络(Resnet50)中,提取角质颚及其色素沉积的数字特征。基于特征金字塔网络(Feature Pyramid Networks,FPN)将各层特征加以融合;再利用区域候选网络(Region Proposal Network,RPN)对特征加以学习并生成候选框;最后,对候选框进行非极大值抑制(Non-Maximum Suppression,NMS),得到角质颚和色素沉积的候选区域,从而实现了角质颚色素沉积占比的自动化精确获取。结果显示:利用Mask-RCNN土颚分割精度为93.60%,色素沉积精度为92.47%,下颚为91.78%,色素沉积为88.78%。研究表明,Mask-RCNN深度学习网络模型可以较好地测量角质颚及其色素沉积的量化占比,本研究为头足类摄食动物的研究提供参考。In order to automatically detect the quantitative proportion of pigment deposition in the beaks of cephalopods,the deep learning network model of Mask-RCNN was used to realize the recognition and segmentation of beaks and its pigment deposition,and a new method of quantitatively automatic measurement for pigment deposition proportion in beaks was proposed.First of all,the beaks and their pigmentation were labeled,and the results were converted into a training set and imported into the residual network(Resnet50)to extract the characteristics of the beaks and their pigmentation.Based on the feature pyramid network(FPN),the features of each layer were merged,and then the region proposal network(RPN)was used to learn the features and generate candidate frames.Finally,the candidate frame was subjected to Non-Maximum Suppression(NMS)to obtain the candidate area of beaks and pigmentation,realizing the intelligent detection of the proportion of pigment deposition in beaks.The experiments showed that the segmentation accuracy of the upper beaks of the cephalopods was 93.60%and the pigmentation accuracy 92.47%;the segmentation accuracy of the lower beaks was 91.78%and the pigmentation accuracy 88.78%.The results show that the deep learning network model of Mask-RCNN could get the proportion of pigment deposition in the beaks and its pigment deposition,providing theoretical references for future studies in cephalopod feeding ecology.
关 键 词:角质颚 色素沉积 深度学习 生长特性 Mask-RCNN
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225