检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐丽[1] 王铭磊 屈立成[1] XU Li;WANG Ming-lei;QU Li-cheng(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出 处:《信息技术》2021年第10期20-25,30,共7页Information Technology
基 金:陕西省自然科学基础研究计划资助项目(2020JM-258)。
摘 要:针对从地物信息复杂的遥感影像中提取道路准确率较低的问题,提出了一种改进双U-Net的路网提取方法。在两个U-Net间添加上下文特征提取模块进行连接;通过使用Log-Cosh方法对IoU损失进行平滑处理,并与二元交叉熵损失加权相加作为模型的损失函数;将数据分为无道路、简单道路、复杂道路、阴影遮挡道路、立体交通道路和含干扰项道路等,并选取后三类图像作为测试集。实验表明,改进的U型网络模型与经典图像分割网络相比,路网提取的准确率提升超过0.3%,IoU和F1指数提升均超过了1%,能够有效地在地物信息复杂的遥感影像中提取道路。Regarding the problem of low accuracy in road extraction from remote sensing images under complex ground information,a road network extraction method based on improved dual u-net is proposed.A context feature extraction module is added to connect the two u-nets.The Log-Cosh method is used to smooth the IoU loss,and the weighted sum of the loss and the binary cross entropy loss is used as the loss function of the model.The data is divided into no road,simple road,complex road,shaded Road,three-dimensional traffic road and road with interference,and the last three kinds of images are selected as the test set.The experiment results show that the accuracy of road network extraction is improved by more than 0.3%,and the IoU and F1 indexes are improved by more than 1%compared with the classical image segmentation network,which can effectively extract roads from remote sensing images with complex ground information.
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117