检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙留倩 魏玉良 王佰玲[1] SUN Liuqian;WEI Yuliang;WANG Bailing(School of Computer Science and Technology,Harbin Institute of Technology,Weihai 264209,China)
机构地区:[1]哈尔滨工业大学(威海)计算机科学与技术学院,山东威海264209
出 处:《网络与信息安全学报》2021年第5期149-155,共7页Chinese Journal of Network and Information Security
基 金:国家重点研发计划(2018YFB2004200)。
摘 要:在信息时代,数据量呈指数式增长,而不同数据源存在难以统一表示的异构问题,给数据共享、重用造成不便。语义网络的迅速发展,使本体映射成为解决该问题的有效手段,其核心是本体相似度计算,提出了一种基于图卷积网络的计算方法。将本体建模为异构图网络,再使用图卷积网络学习文本嵌入规则,得到全局统一表示,完成多源数据的融合。实验结果表明,所提方法计算准确性高于其他传统方法,有效地提高了多源数据融合的准确度。In the information age,the amount of data is growing exponentially.However,different data sources are heterogeneous,which makes it inconvenient to share and multiplex data.With the rapid development of semantic network,ontology mapping is an effective method to solve this problem.The core of ontology mapping is ontology similarity calculation.Therefore,a calculation method based on graph convolution network was proposed.Firstly,ontologiesare modeled as a heterogeneous graph network,then the graph convolution network was used to learn the text embedding rules,which made ontologies were definedin global unified representation.Lastly,multisource data fusion was completed.The experimental results show that the accuracy of the proposed method is higher than other methods,and the accuracy of multi-source data fusion was effectively improved.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170