Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine  被引量:1

在线阅读下载全文

作  者:Fangyoumin Feng Bihan Shen Xiaoqin Mou Yixue Lia Hong Li 

机构地区:[1]CAS Key Laboratory of Computational Biology,Shanghai Institute of Nutrition and Health,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai 200031,China [2]Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 330106,China

出  处:《Journal of Genetics and Genomics》2021年第7期540-551,共12页遗传学报(英文版)

基  金:supported by National Key Research and Development Project(2019YFC1315804);National Natural Science Foundation of China(31771472);Chinese Academy of Sciences(ZDBSSSW-DQC-02);SA-SIBS Scholarship Program,Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01);CAS Youth Innovation Promotion Association(2018307);Chinese Academy of Sciences(KFJ-STS-QYZD-126)。

摘  要:The response rate of most anti-cancer drugs is limited because of the high heterogeneity of cancer and the complex mechanism of drug action.Personalized treatment that stratifies patients into subgroups using molecular biomarkers is promising to improve clinical benefit.With the accumulation of preclinical models and advances in computational approaches of drug response prediction,pharmacogenomics has made great success over the last 20 years and is increasingly used in the clinical practice of personalized cancer medicine.In this article,we first summarize FDA-approved pharmacogenomic biomarkers and large-scale pharmacogenomic studies of preclinical cancer models such as patient-derived cell lines,organoids,and xenografts.Furthermore,we comprehensively review the recent developments of computational methods in drug response prediction,covering network,machine learning,and deep learning technologies and strategies to evaluate immunotherapy response.In the end,we discuss challenges and propose possible solutions for further improvement.

关 键 词:PHARMACOGENOMICS Personalized medicine Drug response Biomarkers Deep learning 

分 类 号:R730.5[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象