基于差分进化优化的支持向量机燃料电池故障诊断  被引量:4

Fuel cell fault diagnosis for support vector machines optimized based on differential evolution algorithm

在线阅读下载全文

作  者:黄亮[1,2] 彭清 谢长君 张锐明[3] 王琼 HUANG Liang;PENG Qing;XIE Changjun;ZHANG Ruiming;WANG Qiong(School of Automation,Wuhan University of Technology,Hubei Wuhan 430070,China;Complex Time and Space(Wuhan)Data Technology Co.,Ltd.,Hubei Wuhan 430070,China;Guangdong Guangshun New Energy Power Technology Co.,Ltd.,Guangdong Foshan 528000,China)

机构地区:[1]武汉理工大学自动化学院,湖北武汉430070 [2]复变时空(武汉)数据科技有限公司,湖北武汉430070 [3]广东广顺新能源动力科技有限公司,广东佛山528000

出  处:《电源技术》2021年第10期1316-1319,共4页Chinese Journal of Power Sources

基  金:国家重点研发计划资助(2019YFB1600800);国家重点研发计划资助(2018YFB0105700)。

摘  要:质子交换膜燃料电池是一种多耦合非线性的复杂系统,电堆内部的水淹和膜干故障是其运行过程中最常见的故障。基于差分进化算法优化的支持向量机方法,可以用于燃料电池故障诊断,该方法在传统的支持向量机模型上增加了主成分提取和差分进化算法寻找最优参数,使模型得到更好的训练效果。采用电堆20片单电池电压为数据集进行相关的故障验证分析,结果表明:通过差分进化算法优化的支持向量机在燃料电池故障诊断中有着较高的准确度,具有一定的工程应用价值。Proton exchange membrane fuel cell is a complex system with multiple coupling nonlinearities,water flooding and membrane dry failure inside the stack are the most common fault during its operation.A support vector machine fault diagnosis method was proposed based on differential evolution algorithm optimization,this method added principal component extraction and differential evolution algorithms to the traditional support vector machine model to find the optimal parameters,and the model could get the best training effect.The voltage of 20 single cells of the stack was used as the data set for relevant fault verification analysis.The results show that the support vector machine optimized by differential evolution algorithm has higher accuracy in fuel cell fault diagnosis and has certain engineering application value.

关 键 词:燃料电池 PCA 差分进化 支持向量机 故障诊断 

分 类 号:TM911.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象