检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵洁 李晓瑞 SHAO Jie;LI Xiaorui(School of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
机构地区:[1]上海电力大学电子与信息工程学院,上海200090
出 处:《上海电力大学学报》2021年第5期475-480,共6页Journal of Shanghai University of Electric Power
摘 要:与传统零样本识别相比,广义零样本识别的样本不仅包括测试类别样本,还包括训练类别样本,因此,广义零样本识别更具有现实意义。提出了一种基于混合高斯分布的广义零样本识别的算法(MGM VAE),在编码器中采用多个通道结构,促使变分自编码器(VAE)模型可以在更广泛的空间内寻求更好的映射解。Compared with the traditional zero-shot learning,generalized zero-shot learning includes the test category and the training category.Therefore,generalized zero-shot learning is more realistic.This paper proposes a generalized zero-shot learning algorithm based on a Gaussian mixture distribution(MGM-VAE).Multi-channel structures is used in the encoder,so that the variational auto encoding(VAE)model can seek a better mapping solution in a wider space.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.9.72