基于改进MF-DFA的零件特征提取与缺陷识别  被引量:3

Feature Extraction and Defect Identification of Parts Based on Improved MF-DFA

在线阅读下载全文

作  者:何涛[1,2] 王幸 王少东 王正家[1,2] 盛文婷 HE Tao;WANG Xing;WANG Shao-dong;WANG Zheng-jia;SHENG Wen-ting(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;Hubei Key Laboratory of Modern Manufacture Quality Engineering,Hubei University of Technology,Wuhan 430068,China)

机构地区:[1]湖北工业大学机械工程学院,武汉430068 [2]湖北工业大学现代制造质量工程湖北省重点实验室,武汉430068

出  处:《组合机床与自动化加工技术》2021年第10期105-110,共6页Modular Machine Tool & Automatic Manufacturing Technique

基  金:国家自然科学基金项目(51275158)。

摘  要:针对现代工业制造背景下的个性化机械零件,通常具有不规则和一定自相似性的分形特性,提出一种基于改进多重分形去趋势波动分析(MF-DFA)法的零件特征提取与缺陷识别方法。首先,选用三角形覆盖模块替代传统MF-DFA法中的正方形覆盖模块,解决传统MF-DFA法存在过度覆盖的问题,为零件图像缺陷识别提供更精准的数据;其次,利用改进MF-DFA法计算零件图像的多重分形谱;再利用核主成分分析(KPCA)方法提取零件图像的缺陷特征值;最后通过支持向量机(SVM)对零件缺陷进行识别。实验结果表明,三角覆盖二维MF-DFA算法能够准确提取零件特征,提高零件缺陷识别的准确率。Aiming at personalized mechanical parts under the background of modern industrial manufacture,it usually have the fractal characteristics of irregularity and self-similarity,this paper presents a feature extraction and defect identification of parts method based on improved multifractality detrended fluctuation analysis(MF-DFA).First of all,the triangle covering module is used to replace the square covering module in the traditional MF-DFA method,addressing the problem of over-coverage in traditional MF-DFA method and provide more accurate data for defect identification of part images;Secondly,the modified MF-DFA method is used to calculate the multifractal spectrum of part images.Then,a method of kernelized principal component analysis(KPCA)is used to extract the value of defect features of part images;Finally,support vector machines(SVM)is adopted to identify parts defects.Experimental results show that the triangular cover two-dimensional MF-DFA algorithm can accurately extract part features and improve the accuracy of part defect recognition.

关 键 词:零件图像 去趋势波动分析 多重分形 特征提取 缺陷识别 

分 类 号:TH16[机械工程—机械制造及自动化] TG506[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象