检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄柯勋 吴松荣[1,2] 向碧楠 徐睿 涂振威 HUANG Kexun;WU Songrong;XIANG Binan;XU Rui;TU Zhenwei(Key Laboratory of the Ministry of Education for Maglev Technology and Trains,Chengdu,Sichuan 610031,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu,Sichuan 611756,China)
机构地区:[1]磁浮技术与磁浮列车教育部重点实验室,四川成都610031 [2]西南交通大学电气工程学院,四川成都611756
出 处:《机车电传动》2021年第5期161-166,共6页Electric Drive for Locomotives
基 金:四川省重大科技专项资助项目(20QYCX0095)。
摘 要:针对IGBT老化失效问题,提出一种基于遗传算法改进的小波神经网络时间序列预测方法。在分析IGBT失效原理的基础上,利用IGBT老化数据集,选取关断瞬时"集电极-发射极"尖峰电压为失效特征参数,采用滑动时间窗法构建训练集与测试集,然后在MATLAB中搭建遗传算法改进的小波神经网络预测模型进行预测,并与传统的小波神经网络预测模型对比分析。试验结果显示,遗传算法改进的小波神经网络预测方均误差为0.017 1,方均根误差为0.130 9,平均绝对误差为0.109 6,分别比传统小波神经网络预测模型降低了0.005 7, 0.020 0, 0.064 0,有效提升了IGBT时间预测的精度。Aiming at the aging failure of IGBT, an improved wavelet neural network sequentially prediction method based on genetic algorithm was proposed. Based on the analysis of IGBT failure mechanism, with the IGBT aging data, the instantaneous collector emitter peak voltage was selected as the failure characteristic parameter, the training set and test set were constructed by the sliding time window method, and then the wavelet neural network prediction model improved by genetic algorithm was built in MATLAB for prediction, which was compared with the traditional wavelet neural network prediction model. The experimental results show that the mean square error of the improved wavelet neural network is 0.017 1, the root square mean error is 0.130 9, and the average absolute error is 0.109 6, compared with the traditional wavelet neural network prediction model, they are reduced by 0.005 7,0.020 0 and 0.064 0 respectively, which effectively improves the accuracy of IGBT sequentially prediction.
关 键 词:绝缘栅双极型晶体管 失效机理 小波神经网络 遗传算法 时间序列预测
分 类 号:TN325.2[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222