多级卷积神经网络的沥青路面裂缝图像层次化筛选  被引量:5

Multi-level convolutional neural network for asphalt pavement crack image hierarchical filtering

在线阅读下载全文

作  者:封筠 赵颖 毕健康 赖柏江 胡晶晶[2] FENG Jun;ZHAO Ying;BI Jian-kang;LAI Bai-jiang;HU Jing-jing(School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang Hebei 050043,China;School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China)

机构地区:[1]石家庄铁道大学信息科学与技术学院,河北石家庄050043 [2]北京理工大学计算机科学与技术学院,北京100081

出  处:《图学学报》2021年第5期719-728,共10页Journal of Graphics

基  金:国家自然科学基金项目(61772070,61972267);河北省高等学校科学技术研究重点项目(ZD2021333);河北省研究生专业学位教学案例库建设项目(KCJSZ2020068);石家庄铁道大学研究生创新资助项目(YC2021075)。

摘  要:如何快速准确地识别与评估沥青路面裂缝病害,已成为路面养护和保障道路安全的重要任务之一。实际采集路面图像中往往存在大量的非裂缝图像,在保证裂缝图像无漏筛的前提下,尽可能提高裂缝图像的精确率与非裂缝图像的真负例率,则对于降低人工筛选的工作强度,以及后续裂缝自动分割与病害损坏程度评估具有重要实际意义。故此,提出了一种多级卷积神经网络的沥青路面裂缝图像筛选方法,由训练、微调与验证三阶段构成,利用微调集获得softmax层输入微调增量。为避免裂缝图像召回率增加与精确率下降的问题,在对比不同卷积神经网络筛除的非裂缝图像异同基础上,采用改进AlexNet作为一级筛选网络,VGG16或ResNet50作为二、三级筛选网络的层次化处理模型。对于含噪声及复杂路面图像测试集的实验结果表明,三级层次化筛选模型能在100%召回裂缝图像时,达到高的真负例率及准确率。与其他方法的对比实验表明,所提方法可有效解决沥青路面裂缝图像漏筛问题,且具有更好的检测效果。The quick and accurate identification and evaluation of asphalt pavement crack disease has become one of the important tasks of pavement maintenance and road safety.There are a number of non-crack images in the actual collected pavement images.On the premise of ensuring that there is no missing filter in the crack image,it is of great practical significance to improve the precision of crack images and true negative rate of non-crack pavement images as high as possible,thus reducing the work intensity of manual filtering,as well as subsequent automatic crack segmentation and disease damage assessment.A multi-level convolutional neural network method for asphalt pavement image filtering was proposed,which consists of three stages,i.e,training,fine-tuning and validation.The input fine-tuning increment of softmax layer was obtained using fine-tuning set.In order to avoid the problem that the precision decreases when the recall of crack image increases,based on the comparison of the similarities and differences of non-crack images excluded by different convolutional neural networks,a hierarchical processing model was proposed,in which the improved AlexNet was employed as the first level filtering network and VGG16 or ResNet50 as the second or third level filtering network.The experimental results on noisy and complex road images show that the three-level hierarchical filtering model can achieve high true negative rate and high accuracy when recalling crack images 100%.Compared with other methods,the experimental results show that the proposed method can effectively solve the problem of missing filter in asphalt pavement crack image,and can produce a better detection effect.

关 键 词:沥青路面图像 裂缝筛选 卷积神经网络 softmax层微调 多级网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象