检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张刘[1,2] 姜裕标[2] 何萌 陈洪[2] 高立华[2] ZHANG Liu;JIANG Yubiao;HE Meng;CHEN Hong;GAO Lihua(State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China;Low Speed Aerodynamics Institute of China Aerodynamics Research and Development Center,Mianyang 621000,China)
机构地区:[1]中国空气动力研究与发展中心空气动力学国家重点实验室,绵阳621000 [2]中国空气动力研究与发展中心低速空气动力研究所,绵阳621000
出 处:《空气动力学学报》2021年第5期53-62,共10页Acta Aerodynamica Sinica
基 金:中国空气动力研究与发展中心基础和前沿技术研究基金资助项目(FFTRF20171001)。
摘 要:短距起降运输机对增升装置提出了更高要求,常规机械式增升装置已无法满足,内吹式襟翼系统是当今固定翼飞机最有效的动力增升形式。为推动该技术的工程应用,基于雷诺平均N-S方程,对某加装60°偏角无缝襟翼的亚声速翼型在环量控制作用下的流场进行数值模拟,研究了其在不同吹气动量系数下的气动特性及流动形态,分析了不同环量控制阶段增升机理、失速特性和吹气动量系数对失速特性影响规律。结果表明:内吹式襟翼增升控制效率(升力系数增量与吹气动量系数的比值)较高,在临界吹气动量系数下可达70,此时相较于无吹气状态,升力增加约125%;主翼上由于环量增加产生的升力增量是翼型升力增量的主要来源,约占总升力增量的78%;吹气动量系数增加可造成翼型气动中心后移;附面层分离控制区主要通过消除襟翼上的流动分离增加升力,超环量控制区升力的增加是由于尾缘下游的射流效应使流线进一步偏转而实现的;随吹气动量增加,附面层分离控制区的失速迎角提前,超环量控制区失速迎角略微推迟。With the special demand of STOL performance for transport plane,the regularly mechanical devices for lift enhancement could no longer satisfy the requirement of maximum available lift coefficient.The internally blown flap system is the most efficient way of powered lift-enhancement for fixed-wing aircraft.In order to promote the engineering application of this technology,the aerodynamic characteristics and flow structure of a 2D subsonic 60°seamless flap with varying moment coefficient are obtained based on RANS equations.The mechanism of circulation control and stall in different regime have been analysed.It reveals that,the lift-enhancement efficiency(the ratio between the gain in lift yielded by the active system and the required blowing momentum)of this system is high,which reaches the highest value of 70 at the critical momentum,and the lift coefficient increase by 125%compared to that of without blowing.With blowing,the lift coefficient increases due to the circulation increases on the main wing surface,the increment is about 78%of the total lift coefficient increment.The location of aerodynamic center of the airfoil moves backward with the increase of blowing flux.Further,blowing delays flow separation at the boundary-layer control regime,resulting in a significant lift coefficient improvement.The increment of lift coefficient is achieved by a further defection of the streamlines due to the jet effect downstream of the trailing edge at the super-circulation regime.With the blowing flux increase,the stall angle decrease in the boundary layer regime and increase at the super-circulation regime.
关 键 词:环量控制 内吹式襟翼 柯恩达效应 射流效应 失速特性
分 类 号:V211.41[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30