针对工业控制拓扑的确定性局部多点故障检测方法  被引量:1

Deterministic local multi-point fault detection method for industrial control topology

在线阅读下载全文

作  者:梁若舟 赵曦滨[1] 万海[1] LIANG Ruozhou;ZHAO Xibin;WAN Hai(School of Software,Tsinghua University,Beijing 100084,China)

机构地区:[1]清华大学软件学院,北京100084

出  处:《通信学报》2021年第10期10-22,共13页Journal on Communications

基  金:国家自然科学基金资助项目(No.62076146,No.U1801263,No.U20A6003,No.U19A2062);国家重点研发计划基金资助项目(No.2018YFB1703404);广东省重点领域研发计划基金资助项目(No.2020B010164001)。

摘  要:针对现有网络故障检测方法不能同时满足检测时间确定、检测开销低、多点故障检测能力及工业控制网络拓扑适应性等4种能力,提出了一种基于布尔网络测绘的时间敏感网络多点故障检测方法。该方法分为离线准备阶段和在线检测阶段。离线准备阶段,检测流生成算法基于网络拓扑生成一组检测流集合。该检测流集合对网络拓扑的边进行覆盖。在线检测阶段,检测包按照预定义路径周期性地从源节点发送到控制器。随后控制器根据每个检测包的到达状态来推断发生故障的链路。实验结果表明,与现有方法相比,所提方法能够在确定的时间内准确地识别出多个故障链路,并且生成的检测路径集更少,满足上述的4种能力。In view of the fact that the existing network fault detection algorithms cannot meet the four requirements of determination of detection time,low detection overhead,multi-point fault detection ability and topology adaptability of industrial control network at the same time,a multi-point fault detection method of time sensitive network based on Boolean network mapping was proposed.The method was divided into offline preparation phase and online detection phase.In the offline preparation phase,the detection flow generation algorithm generated a set of detection flows based on the network topology.The detection flow set covered the edges of the network topology.In the online detection phase,the detection packet was sent periodically from the source node to the controller according to the predefined path.Then,the controller inferred the failed link according to the arrival state of each detection packet.The experimental results show that,compared with the existing methods,the proposed method can accurately identify multiple failed links in a certain time,and generate fewer detection path sets to meet the above four requirements.

关 键 词:布尔网络测绘 多点故障检测 时间敏感网络 工业控制网络 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象