检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴明慧 侯凌燕[1] 王超 WU Minghui;HOU Lingyan;WANG Chao(Computer Open Systems Laboratory,Beijing Information Science and Technology University,Beijing 100101,China;Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing 100101,China)
机构地区:[1]北京信息科技大学计算机开放系统实验室,北京100101 [2]北京材料基因工程高精尖中心,北京100101
出 处:《计算机工程与应用》2021年第21期109-115,共7页Computer Engineering and Applications
摘 要:基于时序数据建模的长短时神经网络(LSTM)可用于预测类问题。现实场景中,LSTM预测精度往往与输入序列长度相关,有效的历史信息会被新输入的数据淹没。针对此问题,提出在LSTM节点中构建强化门实现对遗忘信息的提取,并与记忆信息按比例选取、融合、输入记忆单元,增加学习过程中的梯度传导能力,使网络对相对较远的信息保持敏感以提升记忆能力。实验采用工业故障数据,当序列长度超过100时,具有强化门机制的改进模型预测误差低于其他LSTM模型。预测精度的差距随序列增加而增大,当序列长度增至200时,改进模型的预测误差(RMSE/MAE)较原模型分别降低了26.98%与35.85%。Based on time series data modeling,Long Short-Term Memory neural network(LSTM)can be used to solve prediction-oriented problems.In real scenarios,the prediction accuracy of LSTM is often related to the length of the input sequence,and valid historical information will be overwhelmed by the newly input data.To solve this problem,it is proposed to construct a reinforcement gate in the LSTM node to extract the forgotten information,and to select,merge,and enter the memory unit in proportion to the memory information to increase the gradient conduction ability in the learning process,so that the network can deal with relatively distant information,stay sensitive to improve memory ability.The experiment uses industrial fault data.When the sequence length exceeds 100,the prediction error of the improved model with enhanced gate mechanism is lower than other LSTM models.The gap in prediction accuracy increases with the increase of the sequence.When the sequence length increases to 200,the prediction error(RMSE/MAE)of the improved model is reduced by 26.98%and 35.85%respectively compared with the original model.
关 键 词:长短时神经网络 时间序列预测模型 记忆增强机制 深度学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222