检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林晓程 朱腾 黄丹萍 LIN Xiaocheng;ZHU Teng;HUANG Danping(Guangzhou Women and Children’s Medical Center,Guangzhou 510623,China)
机构地区:[1]广州市妇女儿童医疗中心,广东广州510623 [2]广东省人民医院,广东广州510080
出 处:《现代医院》2021年第10期1627-1631,共5页Modern Hospitals
基 金:广东省医学科学技术研究基金项目(A2020403)。
摘 要:目的本研究旨在建立一种基于B超检查和临床信息的模型,能够术前精准预测初始腋窝淋巴结阳性(cN+)的乳腺癌新辅助化疗后非前哨淋巴结(NSLN)是否转移。方法本研究共纳入257例cN+乳腺癌患者(训练集179例,测试集78例),采用单因素和多因素分析,筛选影响乳腺手术前NSLN转移的临床因素,结合乳腺癌新辅助治疗后B超检查,建立临床联合影像学的预测模型。结果有四个临床因素对非前哨淋巴结是否转移有影响:新辅助治疗后是否获得乳腺病灶的临床完全缓解(OR:4.84,95%CI:2.13~11.91,P<0.001),基线临床分期(OR:2.68,95%CI:1.15~6.58,P=0.025),雌激素受体表达情况(OR:3.29,95%CI:1.39~8.39,P=0.009),Her2表达情况(OR:0.21,95%CI:0.08~0.50,P=0.001)是cN+乳腺癌新辅助治疗后非前哨淋巴结转移的独立预测因子。基于上述数据的临床预测模型的AUC为0.82(95%CI:0.76~0.88)。在该临床模型中加入新辅助后新辅助治疗后B超检查结果构建临床联合影像的预测模型。该临床-影像模型预测效能显著提高,其AUC为0.84(95%CI:0.78~0.90)。结论本研究将乳腺癌新辅助治疗后乳腺B超与其他临床因素结合,建立了一种预测初始腋窝淋巴结阳性的乳腺癌患者新辅助治疗后NSLN是否转移的新模型。该模型预测效能较好,有助于临床医生在新辅助化疗后筛选出可避免不必要的ALND的乳腺癌患者。Objective This study aimed to develop a new model Incorporating breast ultrasound and clinical information for the prediction of NSLN metastasis in patients with initial clinical node positivity(cN+).Methods The present study reviewed a total of 257 patients(179 in the training set and 78 in the testing set)with cN+breast cancer who underwent both sentinel lymph node biopsy(SLNB)and axillary lymph node dissection(ALND)following NAC.Univariate and multivariate analyses were used to select clinical factors affecting NSLN metastasis prior to breast surgery.A logistic regression model was developed based on these factors and the results of ultrasound(AUS).Results Four factors with p<0.05 in the univariate analysis,including ycT0(odds ratio[OR]:4.84,95%confidence interval[CI]:2.13-11.91,P<0.001),clinical stage before NAC(OR:2.68,95%CI:1.15-6.58,P=0.025),estrogen receptor(ER)expression(OR:3.29,95%CI:1.39-8.39,P=0.009),and Her2 status(OR:0.21,95%CI:0.08-0.50,P=0.001),were independent predictors of NSLN metastases.The clinical model based on the above data resulted in an AUC of 0.82(95%confidence interval[CI]:0.76-0.88)in the training set and 0.83(95%CI:0.74-0.92)in the validation set.The results of the post-NAC AUS were added to the clinical model to construct a clinical imaging model for the prediction of NSLN metastasis with an area under the curve of 0.84(95%confidence interval[CI]:0.78-0.90)in the training set and 0.87(95%CI:0.79-0.95)in the validation set.Conclusion The present study incorporated the results of AUS with other clinal factors to develop a new model for the prediction of NSLN metastasis in patients with initial cN+prior to breast surgery.This model performed excellently,allowing physicians to select patients for whom unnecessary ALND could be omitted after NAC.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.172.41