检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xia Cui Guangwei Yuan Fei Zhao
机构地区:[1]Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,P.O.Box 8009-26,Beijing 100088,China [2]College of Science,North China University of Technology,Beijing 1OO144,China [3]Graduate School of China Academy of Engineering Physics,Beijing 100088,China
出 处:《Journal of Computational Mathematics》2021年第5期777-800,共24页计算数学(英文)
基 金:This work is supported by the National Natural Science Foundation of China(11871112,11971069,11971071,U1630249);Yu Min Foundation and the Foundation of LCP.
摘 要:A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization(TLCD)at each time step.It does not stir numerical oscillation,while permits large time step length,and produces more accurate numerical solutions than the other two well-known second-order time evolution nonlinear schemes,the Crank-Nicolson(CN)scheme and the backward difference formula second-order(BDF2)scheme.By developing a new reasoning technique,we overcome the difficulties caused by the coupled nonlinear discrete diffusion operators at different time layers,and prove rigorously the TLCD scheme is uniquely solvable,unconditionally stable,and has second-order convergence in both s-pace and time.Numerical tests verify the theoretical results,and illustrate its superiority over the CN and BDF2 schemes.
关 键 词:Nonlinear diffusion problem Nonlinear two-layer coupled discrete scheme Second-order time accuracy Property analysis Unique existence CONVERGENCE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229