检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张伟涛 米吉提·阿不里米提[1] 郑方 艾斯卡尔·艾木都拉[1] Zhang Weitao;Mijit Ablimit;Zheng Fang;Askar Hamdulla(College of Information Science and Engineering,Xinjiang University,Urumqi,Xinjiang 830046,China)
机构地区:[1]新疆大学信息科学与工程学院,新疆乌鲁木齐830046
出 处:《计算机时代》2021年第11期21-24,29,共5页Computer Era
基 金:国家重点研发计划(No.2017YFC0820602)。
摘 要:语音识别中的一个重要的分支就是关键词检索。虽然在英语上的关键词检索已经成熟,但是低资源的语音,比如维语的语音关键词检索研究缓慢,仍需要更深入的研究。文章在维吾尔语语数据集thuyg20上,先在GMM-HMM(Gaussian Mixture Model Hidden Markov Model)声学模型,DNN-HMM(Hidden Markov Model Deep Neural Network)声学模型,LSTM-HMM(Long Short-term Memory Hidden Markov Model)声学模型解码产生的网格lattice上捕捉关键词,将DNN-HMM和LSTM-HMM解码产生的网格进行融合,再在融合的网格lattice上进行关键词检索。实验结果表明,融合后的结果在准确率和召回率方面要优于DNN-HMM和LSTM-HMM模型的检索性能。An important branch of speech recognition is keyword retrieval. Although keyword retrieval in English has become mature, the research on low-resource speech,such as Uyghur speech keyword retrieval, is slow and still needs more in-depth research. On the Uyghur language data set thuyg20, the keywords are captured on the lattice generated by decoding with the acoustic models of GMM-HMM (Gaussian Mixture Model Hidden Markov Model) acoustic model, DNN-HMM (Hidden Markov Model Deep Neural Network) acoustic model and LSTM-HMM (Long Short-term Memory Hidden Markov Model), merge the lattices generated by the DNN-HMM and LSTM-HMM decoding, and then perform keyword search on the merged lattice. The experimental results show that the fusion result is better than the retrieval performance of the DNN-HMM and LSTM-HMM models in terms of accuracy and recall.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38