检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵嘉豪 周赣[1] 黄莉 陆春艳 陶晓峰 冯燕钧 ZHAO Jiahao;ZHOU Gan;HUANG Li;LU Chunyan;TAO Xiaofeng;FENG Yanjun(School of Electrical Engineering,Southeast University,Nanjing 210096,China;NARI Group Corporation/State Grid Electric Power Research Institute,Nanjing 211106,China)
机构地区:[1]东南大学电气工程学院,江苏南京210096 [2]南瑞集团有限公司(国网电力科学研究院有限公司),江苏南京211106
出 处:《电力自动化设备》2021年第11期140-146,198,共8页Electric Power Automation Equipment
基 金:国家自然科学基金资助项目(51877038);国家电网公司总部科技项目(5400-202018421A-0-0-00)。
摘 要:随着电网的快速发展,用电信息采集系统的数据计算业务面临着巨大挑战。近年来,图形处理器(GPU)因其在浮点计算速度和存储带宽方面的优势成为高性能计算问题中的研究热点,也被成功应用在电力系统计算分析等科学计算领域。在基于人工智能方法的电力负荷预测问题中,以往大部分研究仅考虑了使用GPU加速预测模型的训练,而并未应用在数据集的获取和计算上。提出了一种基于中央处理器-图形处理器(CPU-GPU)异构计算框架下全流程加速的高性能用电负荷预测方案。首先结合统一计算架构(CUDA)和多线程技术实现了使用多台GPU完成用电负荷的并行预处理,随后在聚类分析后基于XGBoost算法完成了多台区负荷预测,并利用GPU加速了模型的训练计算。最后通过对深圳市43254个台区用电信息的实例分析,验证了所提方法的高效性与适用性。With the rapid development of power grid,the electricity information acquisition system faces great challenges in the data computing business.Recently,GPU(Graphics Processing Unit)has become important issues in high-performance computing problems due to its superior performance on floating-point computing speed and memory bandwidth.GPU has been successfully applied to scientific computing fields such as power system caculating analysis.When facing power load forecasting problem based on artificial intelligence methods,most of the past researches only considered training of GPU-accelerated forecasting model,but not applied to data acquisition and calculation.A high-performance electricity load forecasting solution under the CPU-GPU(Central Processing Unit-Graphics Processing Unit)heterogeneous computing framework is proposed.Firstly,with the help of CUDA(Compute Unified Device Architecture)and multithreading technology,power data is computed in parallel by multi-GPUs.Afterwards,with the help of cluster analysis,multi-station load forecasting is completed based on XGBoost algorithm,where GPU accelerates the model training calculation.Finally,through the case analysis of the electricity information of 43254 stations in Shenzhen,the efficiency and applicability of the proposed method are verified.
关 键 词:用电信息采集系统 负荷预测 GPU 异构计算 XGBoost
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28