检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨莹 闫泽飞 华瑛[1] YANG Ying;YAN Zefei;HUA Ying(College of Information Engineering,Xi'an University,Xi'an,Shaanxi Province,710065 China)
机构地区:[1]西安文理学院信息工程学院,陕西西安710065
出 处:《科技资讯》2021年第22期183-186,共4页Science & Technology Information
摘 要:该文是针对插值法与拟合法在传染病问题上的应用分析。搜集连续60天的患病人数作为处理数据,通过使用插值法和拟合法进行模拟,求得累计患病人数与时间的关系。结果表明:(1)在精度上拉格朗日插值法与牛顿插值法的误差相似。但是对于一些结构复杂的函数,牛顿插值法的优势比起拉格朗日插值法更加明显。(2)使用数据拟合法进行传染病问题的应用分析,相较于插值法处理能得到更加精准的结果。This paper analyzes the application of interpolation method and fitting method in the problem of infectious diseases.The number of patients in 60 consecutive days was collected as the processing data,and the relationship between the cumulative number of patients and time was obtained by using interpolation method and fitting method for simulation.The results show that:(1)The errors of Lagrange interpolation method and Newton interpolation method are similar in accuracy.However,for some functions with complex structure,the advantages of Newton interpolation method are more obvious than Lagrange interpolation method.(2)The application analysis of infectious disease problems using data fitting method can get more accurate results than interpolation method.
关 键 词:拉格朗日插值法 牛顿插值法 差商 数据拟合法 最小二乘法
分 类 号:O314[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200