检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴文杰 李征[1] Wu Wenjie;Li Zheng(School of Information Science and Technology Donghua University,Shanghai 201620)
机构地区:[1]东华大学信息科学与技术学院,上海201620
出 处:《科技风》2021年第31期59-61,共3页
摘 要:变压器作为电力系统中重要的一环,实时掌握变压器的状态信息尤为重要。变压器运行时的温度信息就是判断变压器自身运行状态的一个重要因素,因此提出了基于BP神经网络的干式变压器绕组温度预测方法。首先建立了干式变压器绕组温度BP神经网络预测模型,利用云平台现有的300组数据,进行仿真分析。结果表明,基于BP神经网络的干式变压器绕组温度预测模型具有很好的预测效果,为实现干式变压器绕组的温度监控提供了参考意义。As an important part of the power system,the transformer is particularly important to grasp the status information of the transformer in real time.The temperature information during the operation of the transformer is an important factor for judging the operation status of the transformer itself,so a method for predicting the winding temperature of the dry-type transformer based on the BP neural network is proposed.First,a BP neural network prediction model for the winding temperature of dry-type transformers is established,and the 300 sets of data available on the cloud platform are used for simulation analysis.The results show that the dry-type transformer winding temperature prediction model based on BP neural network has a good prediction effect.It provides a reference for realizing the temperature monitoring of dry-type transformer windings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.7.5