检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马娟 曹言勇[1] 朱卫红[1] MA Juan;CAO Yan-yong;ZHU Wei-hong(Institute of Cereal Crops,Henan Academy of Agricultural Sciences,Zhengzhou 450002)
机构地区:[1]河南省农业科学院粮食作物研究所,郑州450002
出 处:《植物遗传资源学报》2021年第6期1708-1715,共8页Journal of Plant Genetic Resources
基 金:河南省科技攻关项目(192102110008,212102110279);河南省农业科学院优秀青年基金(2020YQ04)。
摘 要:穗轴粗和出籽率均是典型的数量性状,在不同程度上影响玉米产量。全基因组选择整合全基因组关联分析(GWAS,genome-wide association study)的先验信息是提高性状预测准确性的有效方法。本研究利用309份玉米自交系穗轴粗和出籽率表型和基因分型测序技术获得的基因型数据,研究基因组最佳线性无偏预测(GBLUP,genomic best linear unbiased prediction)、贝叶斯A(Bayes A)和再生核希尔伯特空间(RKHS,reproducing kernel Hilbert space)模型对2种GWAS方法即固定和随机模型交替概率统一(FarmCPU,fixed and random model circulating probability unification)和压缩混合线性模型(CMLM,compressed mixed linear model)衍生的不同数量标记集、随机选择标记集和所有标记对预测准确性的影响。对于2个性状FarmCPU和CMLM衍生标记集,3个预测模型间的预测准确性差异较小,差值变异范围介于0~0.03。对于随机标记集,相比其他2个模型的预测准确性,RKHS对穗轴粗可提高3.57%~15.91%,而3个预测模型对出籽率具有相似的预测效果。除了50和100个标记,3个模型利用CMLM衍生标记对2个性状的预测效果均优于FarmCPU。相比随机标记集,穗轴粗GWAS衍生标记的预测准确性可提高15.52%~88.37%;出籽率利用衍生标记可提高1~5.89倍。所有衍生标记集的预测准确性均高于所有标记。这些结果均表明,全基因组选择整合GWAS衍生标记有利于提高穗轴粗和出籽率的预测准确性。Maize ear cob diameter(CD)and kernel ratio(KR)are controlled by multiple quantitative loci and both traits associate with the yield production.The genomic selection in conjugation with information identified by genome-wide association study(GWAS)is an effective method to improve the prediction accuracy.By taking use of the phenotypic datasets of CD and KR and the genotypic data derived from genotyping-by-sequencing in 309 maize inbred lines,here we investigated the genomic prediction accuracy using three GS models(genomic best linear unbiased prediction,GBLUP,Bayes A,reproducing kernel Hilbert space,RKHS)and different marker subsets(GWAS-derived markers:fixed and random model circulating probability unification,FarmCPU,compressed mixed linear model,CMLM,randomly selected markers,and all markers).By taking use of FarmCPU-and CMLM-derived markers at both traits,only slight difference(0-0.03)on the prediction accuracy using three prediction models was observed.For random markers,GS using RKHS model represented higher prediction accuracy of CD(3.57%-15.91%)if compared to two other models,whereas no difference for KR was detected.Except for 50 and 100 markers,the prediction accuracy of CMLM-derived marker using three models were higher than that of FarmCPU-derived markers.Compared to random markers,GWAS-derived markers were able to increase the prediction accuracy(15.52%-88.37%for CD,1-5.89 fold for KR).The prediction accuracy by deployment of GWAS-derived marker subsets was higher than that of all markers.Collectively,these results indicated that genomic selection using GWAS-derived markers could improve the prediction accuracy of CD and KR in maize.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7