检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹建芳 贾一鸣[1] 田晓东 闫敏敏 陈泽宇 Cao Jianfang;Jia Yiming;Tian Xiaodong;Yan Minmin;Chen Zeyu(School of Computer Science&Technology,Taiyuan University of Science&Technology,Taiyuan 030024,China;Dept.of Computer,Xinzhou Teachers University,Xinzhou Shanxi 034000,China)
机构地区:[1]太原科技大学计算机科学与技术学院,太原030024 [2]忻州师范学院计算机系,山西忻州034000
出 处:《计算机应用研究》2021年第11期3489-3494,共6页Application Research of Computers
基 金:山西省高等学校人文社会科学重点研究基地项目(20190130)。
摘 要:古代壁画艺术价值高、内容丰富,对壁画种类进行准确分类是研究者的难题之一。传统的壁画分类任务繁重且需要有经验的研究者完成;现有的图像分类算法已不适于分类含有较强背景噪声的壁画图像。针对以上问题提出了一种新的多通道可分离网络模型(multi-channel separable network model,MCSN)的解决方案。以GoogLeNet网络模型为基本框架,用小卷积核对壁画背景特征进行浅层提取,然后将7×7、3×3等较大卷积核十字分离成7×1、1×7和3×1、1×3等较小的卷积核提取壁画重要的深层次特征信息;使用软阈值化激活缩放策略(activation scaling)增加网络训练时的稳定性,最后通过softmax对壁画分类;使用小批量随机梯度下降(min-batch SGD)算法更新参数。精确率、召回率和F 1值分别为88.16%、90.01%和90.38%。与主流分类算法相比,分类准确率、泛化能力、稳定性有了一定的提升,提高了壁画分类效率。Ancient murals have high artistic value and rich content.It is one of the problems for researchers to accurately classify the types of murals.Traditional mural classification tasks are arduous and require experienced researchers to complete.The existing image classification algorithms are no longer suitable for classifying mural images with strong background noise.To solve the above problems,this paper proposed a new multi-channel separable network model.Using the GoogLeNet network model as the basic framework,it used a small convolution kernel to extract the background features of the murals in a shallow layer,and then separated the larger convolution kernels such as 7×7 and 3×3 into 7×1,1×7 and 3×1,1×3 and other smaller convolution kernels for extraction the important deep-level feature information of murals.It used activation scaling to increase the stability of the network during training,and finally classified the murals through softmax,then used a small batch stochastic gradient descent algorithm to update parameters.The precision rate,recall rate and F 1 value are 88.16%,90.01%and 90.38%,respectively.Compared with mainstream classification algorithms,it improves classification accuracy,generalization ability,and stability to a certain extent,which improves the efficiency of mural classification.
关 键 词:壁画分类 多通道可分离网络 激活缩放策略 GoogLeNet
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30