多注意力机制引导的双目图像超分辨率重建算法  被引量:9

Binocular image super-resolution reconstruction algorithm guided by multi-attention mechanism

在线阅读下载全文

作  者:徐永兵[1] 袁东[1] 余大兵 张志良 赵钊[1] 李庆武 Xu Yongbing;Yuan Dong;Yu Dabing;Zhang Zhiliang;Zhao Zhao;Li Qingwu(Shandong Survey and Design Institute of Water Conservancy,Jinan 250014,China;College of Internet of Things Engineering,Hohai University,Changzhou 213000,China)

机构地区:[1]山东省水利勘测设计院,济南250014 [2]河海大学物联网工程学院,常州213000

出  处:《电子测量技术》2021年第15期103-108,共6页Electronic Measurement Technology

基  金:山东省重大水利科研与技术推广专项(SDSLKY201905);山东省重点研发计划项目(2019GGX105012)资助。

摘  要:由于水下环境复杂,采集的水下图像通常是退化的低质图像。因此提出一种多注意力机制引导的双目图像超分辨率重建算法,选择性挖掘学习图像特征信息,实现高质量图像重建。针对水下图像分辨率低问题,引入双层注意力机制来加强重要细节特征的学习;然后针对双目图像的视差特性,提出一种视差注意力机制来充分学习左右目图像的先验信息,有效提高了图像质量。在Middlebury数据集2倍和4倍重建图像的信噪比分别为33.3和28.39 dB,表明该算法可以在提高图像空间分辨率的同时保留图像细节信息;同时该算法在拍摄的真实水下图像上的重建效果优于其他算法,表明其能实现更高质量的水下图像超分辨率重建。Due to the complex underwater environment,underwater images are usually degraded low-quality images.Therefore,a multi attention mechanism guided binocular image super-resolution reconstruction algorithm is proposed to selectively learn image feature information for achieving high-quality image reconstruction.Aiming at the low resolution of underwater image,a network with double attention module is designed to enhance the learning of important details.Then,aiming at the disparity characteristics of binocular images,a parallax attention module is proposed to fully learn the prior information of left and right-hand images,and improve the image quality effectively.The PSNR of the reconstructed image with×2 and×4 on the Middlebury dataset is 33.3 and 28.39 dB respectively.It shows that the algorithm can improve the spatial resolution of the image and better retain the image details.At the same time,the reconstruction effect of this algorithm is better than other algorithms on the underwater dataset in real underwater scenes,indicating that it can achieve higher quality underwater image super-resolution reconstruction.

关 键 词:超分辨率 注意力机制 双目图像 深度学习 

分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象