带有Riemann初值简化色谱方程组的初边值问题  被引量:1

Initial Boundary Value Problem of Simplified Chromatography Equations with Riemannian Initial Value

在线阅读下载全文

作  者:刘冬冬 俞康宁 郭俐辉[1] LIU Dongdong;YU Kangning;GUO Lihui(College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China;Department of Mathematics,Changji University,Changji 831100,Xinjiang Uygur Autonomous Region,China)

机构地区:[1]新疆大学数学与系统科学学院,乌鲁木齐830046 [2]昌吉学院数学系,新疆昌吉831100

出  处:《吉林大学学报(理学版)》2021年第6期1333-1344,共12页Journal of Jilin University:Science Edition

基  金:国家自然科学基金(批准号:11761068,11401508,11461066);新疆维吾尔自治区优秀青年人才培养项目(批准号:2019Q015).

摘  要:用熵流对和黏性消失法讨论简化色谱方程组的边界熵不等式问题.首先,通过判断色谱方程组初值问题的解是否满足边界熵不等式,给出基本波在边界上相互作用的情况,进而给出色谱方程组初边值问题的全局解;其次,利用数值模拟方法验证初边值问题理论分析的正确性.The boundary entropy inequality problem of simplified chromatography equation was discussed by using entropy flux pair and the viscosity vanishing method.Firstly,by judging whether the solutions of the initial value problem of the chromatography equation satisfied the boundary entropy inequality,we gave the interaction of the elementary waves on the boundary,and then gave the global solutions for the initial boundary value problem of the chromatography equation.Secondly,the correctness of the theoretical analysis for the initial boundary value problem was verified by numerical simulation.

关 键 词:初边值问题 熵流对 波的相互作用 色谱方程组 Dirac激波 

分 类 号:O175.24[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象