检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万红燕[1] 张云云 WAN Hong-Yan;ZHANG Yun-Yun(School of Management,University of Science and Technology of China,Hefei 230026,China)
出 处:《计算机系统应用》2021年第11期281-288,共8页Computer Systems & Applications
摘 要:针对高维群组变量下的分类问题,本文提出了一种基于MCP惩罚的AdaBoost集成剪枝逻辑回归模型(AdaMCPLR),将MCP函数同时应用于特征选择和集成剪枝,在简化模型的同时有效地提升了预测精度.由于传统的坐标下降算法效率较低,本文引用并改进了PICASSO算法使其能够应用于群组变量选择,大大提高了模型的求解效率.通过模拟实验,发现AdaMCPLR方法的变量选择和分类预测效果均优于其他预测方法.最后,本文将提出的AdaMCPLR方法应用于我国上市公司财务困境预测中.To tackle the classification problem of high-dimensional group variables, this study proposes an MCP-based AdaBoost ensemble-pruning logistic regression model(AdaMCPLR). The MCP function is applied to feature selection and ensemble pruning simultaneously, which not only simplifies the model, but also effectively improves the prediction accuracy. For the efficiency enhancement, this paper improves the PICASSO algorithm to make it applicable to group variable selection. Simulation experiments show that the AdaMCPLR method is superior to other prediction methods in variable selection and classification prediction. Finally, the AdaMCPLR method proposed in this study is applied to the financial distress prediction of listed companies in China.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28