检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万涛 赵辉 李德玉[1,2] 马军[3] 武春雪[3] 蒙茗[3] 秦曾昌 Wan Tao;Zhao Hui;Li Deyu;Ma Jun;Wu Chunxue;Meng Ming;Qin Zengchang(School of Biomedical Science and Medical Engineering,Beihang University,Beijing 100191,China;Beijing Advanced Innovation Center for Biomedical Engineering,Beihang University,Beijing 100191,China;Department of Radiology,Beijing Tiantan Hospital,Capital Medical University,Beijing 100050,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学生物与医学工程学院,北京100191 [2]北京航空航天大学生物医学工程高精尖创新中心,北京100191 [3]首都医科大学附属北京天坛医院放射科,北京100050 [4]北京航空航天大学自动化科学与电气工程学院,北京100191
出 处:《中国生物医学工程学报》2021年第5期513-520,共8页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金(61876197,61771325);北京自然科学基金(7192105)。
摘 要:为了探究多参数磁共振图像(MP-MRI)特征对脑垂体瘤质地评估的应用价值,提出一种基于影像组学的计算机辅助诊断方法,以期实现术前肿瘤质地的准确判定,从而为手术入路的选择提供影像学依据。对磁共振图像(T1加权、T1加权对比增强、T2加权)的肿瘤区域分别提取6种共296维纹理特征。采用特征选择方法识别重要的影像组学特征,并且使用支持向量机和随机森林两种常用的分类器对垂体瘤质软与质韧进行判别。在84例临床研究样本共计252张MRI图像上,用所述方法进行训练、十折交叉验证及测试。实验结果表明,与单一MRI图像特征相比较,所提出的MP-MRI特征组合能够获得更好的分类效果,分类准确率、敏感性、特异性、AUC分别达到89.80%、90.51%、89.88%、94.08%,表明MP-MRI影像组学特征能够有效准确地识别垂体瘤的软韧质地,有助于垂体瘤疗效和预后的改善。In order to explore the application value of image characteristics from multi-parameter magnetic resonance imaging(MP-MRI)in evaluating pituitary macroadenoma consistency,this paper presented a radiomics based computer-aided diagnosis method to accurately determine tumor consistency,thus providing an appropriate surgical approach.In this method,6 types of texture features,a total number of 296,were extracted from tumor regions of MRIs(T1-weighted,T1-weighted contrast enhanced,T2-weighted).A feature selection method was adopted to identify important radiomic features.Two classifiers of support vector machine and random forest were utilized to distinguish soft and hard pituitary macroadenomas.The training,10-fold cross validation and testing were performed on a total of 252 MRI images in 84 clinical studies.The experiment results showed that the feature combination of MP-MRI achieved better classification performance compared with single MRI protocol with classification accuracy,sensitivity,specificity and area under the curve of 89.80%,90.51%,89.88%and 94.08%,respectively.These suggested that MP-MRI features could effectively and accurately discriminate the soft from hard pituitary macroadenomas,which could be useful in improving the efficacy and prognosis of pituitary macroadenomas.
关 键 词:影像组学 计算机辅助诊断 垂体瘤 多参数磁共振图像(MP-MRI) 术前评估
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30