检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡汉铖 刘明萍[1] 张震[1] 张镇涛 汪庆年[1] HU Hancheng;LIU Mingping;ZHANG Zhen;ZHANG Zhentao;WANG Qingnian(Information Engineering School,Nanchang University,Nanchang 330031,China)
出 处:《实验室研究与探索》2021年第10期97-102,共6页Research and Exploration In Laboratory
基 金:国家自然科学基金项目(61665006,61865011)。
摘 要:为提高电能质量扰动辨识的准确性,提出一种基于VMD-PCA-SVM的电能质量扰动辨识方法。用Matlab 2017a仿真得到电能质量扰动信号;用变分模态分解(VMD)分解得到本征模态函数(IMF)分量,计算其希尔伯特边际谱的能量值,构造特征向量;将特征向量用主成分分析法(PCA)降维;将降维特征向量输入支持向量机(SVM)中训练,实现对电能质量扰动信号的辨识。与现有文献对比,试验结果表明,该方法准确率高,鲁棒性强,在不同信噪比下能有效识别包括两种复合扰动在内的8种电能质量扰动信号,准确率高达99.94%。In order to improve the accuracy of power quality disturbance identification, a power quality disturbance identification method based on VMD-PCA-SVM is proposed in this paper. Firstly, the power quality disturbance signals are simulated by Matlab 2017 a;Secondly, the intrinsic mode function(IMF) component is obtained by variational mode decomposition(VMD), and the energy value of its Hilbert marginal spectrum is calculated, from which the eigenvector is constructed;Thirdly, the eigenvectors are reduced by principal component analysis(PCA);Finally, the reduced eigenvectors are input into the support vector machine(SVM) to identify the power quality disturbance signals. Compared with the existing literatures, the experimental results show that this method has high accuracy and strong robustness, and can effectively identify 8 kinds of power quality disturbance signals including two kinds of composite disturbances under different SNRs, with an accuracy of 99.94%.
关 键 词:变分模态分解 主成分分析 支持向量机 电能质量 扰动辨识
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117