拟多次调和函数的延拓  

Extension of Quasi-plurisubharmonic Functions

在线阅读下载全文

作  者:宁家福 汪志威 周向宇[3,4] Ning Jiafu;Wang Zhiwei;Zhou Xiangyu(School of Mathematics and Statistics,HNP­LAMA,Central South University,Changsha 410083,China;Laboratory of Mathematics and Complex Systems(Ministry of Education),School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China;Institute of Mathematics,Academy of Mathematics and Systems Sciences and Hua Loo­Keng Key Laboratory of Mathematics,Chinese Academy of Sciences,Beijing 100190,China;School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中南大学数学与统计学院,长沙410083 [2]北京师范大学数学科学学院,北京100875 [3]中国科学院数学与系统科学研究院数学所,北京100790 [4]中国科学院大学数学科学学院,北京100049

出  处:《数学理论与应用》2021年第3期1-12,共12页Mathematical Theory and Applications

基  金:partially supported by the NSFC grant (12071485);partially supported by the Beijing Natural Science Foundation (1202012,Z190003);the NSFC grant (11701031,12071035);partially supported by the NSFC grant (11688101)。

摘  要:本文是(拟)多次调和函数从子复流形延拓的综述.我们先阐述斯坦流形上多次调和函数的延拓,再阐述紧复流形上拟多次调和函数的延拓,其中包含本文作者首次发表的一些新结果.In this paper,we give a survey on the extension of(quasi-)plurisubharmonic functions from complex submanifolds.We firstly review the extension of plurisubharmonic functions on Stein manifolds,and then review the extension of quasi-plurisubharmonic functions on compact complex manifolds,including some unpublished new results of the authors Wang and Zhou.

关 键 词:斯坦流形 多次调和函数 凯勒流形 延拓 

分 类 号:O174.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象