检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢超宇 秦玉 张开放 王晓明 Xie Chaoyu;Qin Yu;Zhang Kaifang;Wang Xiaoming(School of Computer&Software Engineer,Xihua University,Chengdu 610039,China)
机构地区:[1]西华大学计算机与软件工程学院,成都610039
出 处:《计算机应用研究》2021年第12期3801-3807,共7页Application Research of Computers
基 金:西华大学研究生创新基金资助项目(ycjj2019085)。
摘 要:作为一种提取视频时空特征的深度学习方法,伪三维残差网络(pseudo-3D residual net,P3D ResNet)利用SVM目标函数来驱动深度网络学习,这样该方法继承了SVM的不足——仅考虑了不同类别间的间隔,忽略了同类样本数据的分布信息。针对该问题,提出了基于最小类内方差的伪三维残差网络方法,不仅体现了大间隔原理,同时又利用了样本数据的分布信息。该方法首先使用P3D ResNet提取的特征向量计算类内散度矩阵;然后利用该矩阵构建了新的目标函数;最后通过新构建的目标函数来驱动P3D ResNet的学习。将该方法应用到行为识别领域,多个数据集上的实验结果表明,相比于传统的P3D ResNet,所提出的方法获得了更高的识别准确率,体现出了更好的泛化性能。As a deep learning method for extracting video spatio-temporal features,pseudo-3D residual net(P3D ResNet)uses the objective function of SVM to drive the learning of deep network.In this way,this method inherits the insufficiency of SVM,which only considers the interval between different categories,and ignores the distribution information of similar samples.Aiming at this problem,this paper proposed an improved method called P3D ResNet based on minimum intra-class variance.This method not only embodied the principle of large interval,but also used the distribution information of sample data.Firstly,the method used the feature vector extracted by P3D ResNet to calculate the intra-class divergence matrix.Then it used the matrix to construct a new objective function.Finally,it drove the learning of P3D ResNet by the newly constructed objective function.This paper applied the method to the field of behavior recognition.Experimental results on multiple datasets show that compared with the traditional P3D ResNet,the proposed method achieves higher recognition accuracy and shows better generalization performance.
关 键 词:深度学习 伪三维残差网络 支持向量机 类内散度矩阵 行为识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49