检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚金洋 胡颖 王金华[1] YAO Jinyang;HU Ying;WANG Jinhua(School of Sciences,Nantong University,Nantong Jiangsu 226007,China)
出 处:《广西师范大学学报(自然科学版)》2021年第6期119-129,共11页Journal of Guangxi Normal University:Natural Science Edition
基 金:国家自然科学基金(11371207)。
摘 要:广义Howell设计是一类双可分解设计,与置换表、多层常重码有密切联系。本文利用可迁和不可迁starter-adder直接构造方法和广义Howell标架递推工具,给出广义Howell设计新的构造,除了53个可能例外值,解决了每行和每列恰好有5个空单元格的广义Howell设计GHD(n+5,3n)的存在性问题。利用广义Howell设计和多层常重码之间的关系,得到相应最优多层常重码MCWC(3,3n;1,n+5;1,n+5;8)的存在性。Generalized Howell design is a kind of double resolvable designs,which are closely related to permutation arrays and multiply constant-weight codes.By making full use of the direct construction method of transitive starter-adder,intransitive starter-adder and generalized Howell frames as recursive tool,some new constructions for generalized Howell designs are given in this paper.The problem of existence of the generalized Howell design GHD(n+5,3n)s with exactly 5 empty cells in each row and column is solved with 53 possible exceptions.Then,the existence of the corresponding optimal multiply constant-weight codes MCWC(3,3n;1,n+5;1,n+5;8)is given by using the relationship between the generalized Howell designs and the multiply constant-weight codes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.162.48