基于BP神经网络的重油催化裂解模型  被引量:5

DEEP CATALYTIC CRACKING MODEL OF HEAVY OIL BASED ON BP NEURAL NETWORK

在线阅读下载全文

作  者:王志宏[1] 龚剑洪[1] 魏晓丽[1] 首时 Wang Zhihong;Gong Jianhong;Wei Xiaoli;Shou Shi(SINOPEC Research Institute of Petroleum Processing,Beijing 100083)

机构地区:[1]中国石化石油化工科学研究院,北京100083

出  处:《石油炼制与化工》2021年第12期49-53,共5页Petroleum Processing and Petrochemicals

基  金:中国石油化工股份有限公司合同项目(119016-10)。

摘  要:基于BP神经网络,利用重油催化裂解反应过程的试验数据,以涉及原料性质、催化剂活性、操作条件等的11个参数作为输入变量,以乙烯、丙烯和BTX(苯、甲苯、二甲苯)的产率作为输出变量,构建了结构为11-12-3、以贝叶斯算法为学习算法的BP神经网络重油催化裂解模型,并进行了验证。结果表明,该模型对乙烯、丙烯和BTX产率的预测平均相对误差分别为4.59%,3.92%,2.28%,说明所建模型对重油催化裂解反应产物产率的预测效果较好。A deep catalytic cracking model of heavy oil based on BP neural network with structure 11-12-3 and Bayesian algorithm as learning algorithm was constructed and verified by using the experiment data of the heavy oil catalytic cracking reaction process and selecting 11 parameters such as raw material properties,catalyst activity,operation technology as input variables,and the yield of ethylene,propylene and light aromatics(BTX)as output variables.The results showed that the average relative errors of the model for the forecasts of the yields of ethylene,propylene and BTX were 4.59%,3.92%and 2.28%,respectively.The established model has a good prediction effect on the yield of heavy oil catalytic cracking reaction products.

关 键 词:重油 催化裂解 BP神经网络 产物产率 

分 类 号:TQ2[化学工程—有机化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象