基于超分辨注意力机制改进的GIS内部细微缺陷X-DR图像检测方法  被引量:9

Improved X-DR Image Detection Method for GIS Internal Defects Based on Super-resolution Attention Mechanism

在线阅读下载全文

作  者:刘国特 周锦辉 宋新明 邓军[2] 伍伟权 黎俊生 LIU Guote;ZHOU Jinhui;SONG Xinming;DENG Jun;WU Weiquan;LI Junsheng(Foshan University,Foshan 528000,China;China Southern Power Grid Company Limited,Guangzhou 510623,China)

机构地区:[1]佛山科学技术学院,佛山528000 [2]中国南方电网有限责任公司,广州510623

出  处:《高电压技术》2021年第11期3803-3809,共7页High Voltage Engineering

基  金:特高压工程技术(昆明、广州)国家工程实验室开放基金(9500002020030101JZX00096)。

摘  要:为了解决气体绝缘开关设备内部细微缺陷X-DR成像重影雾化、纹理不清晰、易造成误诊断等问题,提出一种基于超分辨率注意力机制改进的气体绝缘开关(gas insulated switchgear,GIS)内部细微缺陷X-DR图像检测算法。该方法以高效亚像素卷积神经网络为框架,引入双层计算机注意力机制SE模块,构成新颖的SE-ESPCN超分辨率网络。通过对GIS设备X-DR图像通道重要程度进行评判,赋予图像卷积层不同的权重,以增强图像故障细节的成像效果。实验结果表明:SE模块与亚像素卷积神经网络的融合,不仅保障了GIS设备故障区域成像的实时性,而且算法输出的高分辨率X-DR图像缺陷细节清晰可见,便于观察,提高了工作人员对缺陷检测的效率与准确性,为实际工程中GIS设备X-DR成像系统改良提供了一定的参考。In order to solve the problems such as X-DR imaging ghost atomization in gas insulated switchgear,unclear texture,being easy to cause misjudgment and so on,this paper proposes an improved X-DR image detection algorithm for gas insulated switchgear(GIS)internal defects based on super-resolution attention mechanism.Based on the efficient sub-pixel convolutional neural network,two SE modules of computer attention mechanism are introduced to construct a novel SE-ESPCN super-resolution network.By evaluating the importance of X-DR image channels of GIS equipment,different proportions of image convolution layers are given to enhance the imaging effect of image fault details.The experimental results show that the fusion of SE module and sub-pixel convolutional neural network not only ensures the real-time performance of equipment fault area,but also makes the defect details of high-resolution X-DR image output by the algorithm more clear and visible,which is easy to observe,and improves the efficiency and accuracy of defect detection of staff.It has a certain reference value for the improvement of X-DR imaging system of GIS equipment in practical engineering.

关 键 词:气体绝缘开关 X-DR图像 超分辨率 注意力机制 亚像素卷积神经网络 SE-ESPCN 缺陷检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TM564[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象