检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾沛 张健 王方 刘小杰 JIA Pei;ZHANG Jian;WANG Fang;LIU Xiao-jie(XianYang Science and Technology Resources Coordination Center,Xianyang 712000,China;School of Economics Sz Management,Xidian University,Xi'an 710071,China;Chengdu Library and Information Center,Chinese Academy of Sciences,Chengdu 610041,China)
机构地区:[1]咸阳市科技资源统筹中心,陕西咸阳712000 [2]西安电子科技大学经济与管理学院,陕西西安710071 [3]中国科学院成都文献情报中心,四川成都610041
出 处:《数学的实践与认识》2021年第22期10-18,共9页Mathematics in Practice and Theory
基 金:西安市科技计划项目(XA2020-RKXYJ-0128);陕西省创新能力支撑计划资助项目(2020KRM062);中央高校基本科研业务费(JB190605)。
摘 要:技术市场是我国现代市场体系和国家创新体系的重要组成部分,技术市场成交额的准确预测对于政府部门制定科技发展规划和政策措施具有重要意义.针对线性回归模型、GM(1,1)模型存在的固有缺陷和传统组合预测模型多次建模复杂性高的问题,通过构建新陈代谢灰色线性回归组合模型,实现了对我国技术市场成交额的动态预测.实证分析的结果表明,灰色线性回归组合模型较线性回归模型和GM(1,1)模型取得了更好的预测精度,而新陈代谢灰色线性回归组合模型较传统灰色线性回归组合模型表现更优,且预测结果显示我国技术市场成交额将继续保持快速增长态势,2020年有望增长32.37%.The technology market is an important part of country’s modern market system and the national innovation system.The accurate forecast of technology market turnover is of great significance for the government to make science and technology development plan and policy measures.Aiming at the inherent defects of the linear regression model,GM(1,1)model and the high complexity of multiple modeling of the traditional combination prediction model,this paper achieves the dynamic prediction of the turnover of China’s technology market by constructing the metabolic grey linear regression model(i.e.,MGLRM).Empirical analysis results show that the grey linear regression model(i.e.,GLRM)has better prediction precision than that of the linear regression model and GM(1,1)model,while the MGLRM perform better than the GLRM.The prediction results obtained by the MGLRM show that the technology market turnover in China will continue to maintain rapid growth,and that is expected to grow by 32.37%in 2020.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222