检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵聪慧 冯庆胜[1] ZHAO Cong-hui;FENG Qing-sheng(School of Electrical and Information Engineering,Dalian Jiaotong University,Dalian 116028,China)
机构地区:[1]大连交通大学电气信息工程学院,辽宁大连116028
出 处:《计算机与现代化》2021年第12期85-90,共6页Computer and Modernization
基 金:辽宁省自然科学基金资助项目(JDL2017006)。
摘 要:针对列车车轮踏面旋转纹理信息无法准确、有效提取的问题,提出一种基于Radon变换和双树复小波变换(DT-CWT)的列车车轮踏面特征提取方法。首先,对车轮踏面图像进行Radon变换;然后,对变换后的图像进行DT-CWT分解,使用分解后的各层低频子带系数和高频子带系数模的均值和标准方差构造特征向量,将其作为区分列车车轮踏面是否发生损伤的依据;最后,由支持向量机(SVM)进行分类决策。使用动车所采集的图像及人为加噪声后的图像进行分类实验,结果表明,本文使用的Radon和DT-CWT算法能有效地进行旋转不变纹理的提取,SVM分类正确率可以达到95%,可为列车车轮踏面状况检测提供更为准确便捷的方法支撑。Aiming at the problem that the rotation texture information of train wheel treads cannot be extracted accurately and effectively,a method for extracting train wheel tread features based on Radon transform and dual-tree complex wavelet transform(DT-CWT)is proposed.Firstly,the Radon transform is performed on the image of the wheel tread;then,the transformed image is decomposed by DT-CWT,and the decomposed layer of the low-frequency sub-band coefficients and the modulus of the mean and standard deviation of the high-frequency sub-band coefficients are used to construct the feature vector,and the feature is used as the basis for distinguishing whether the train wheel tread is damaged or not;finally,the classification decision is made by the support vector machine(SVM).Part of the images used in the classification test are from the automatic vehicle station,and part of the images are artificially noised.The results show that the Radon and DT-CWT algorithms used in this paper can effectively perform the rotation invariant texture extraction,and the SVM classification accuracy rate can reach 95%.It provides more accurate and convenient method support for the detection of train wheel tread conditions.
关 键 词:RADON变换 双树复小波变换 旋转不变 特征提取 支持向量机
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31