基于ARIMA模型的非伤寒沙门菌发病率趋势预测  被引量:3

Prediction of incidence rate of nontyphoidal salmonella based on ARIMA model

在线阅读下载全文

作  者:程颖[1] 田滢[2] CHENG Ying;TIAN Ying(Department of Pediatric Intensive Medicine,Hubei Maternal and Child Health Hospital,Wuhan,Hubei 430070,China;Department of Otorhinolaryngology,Hubei Maternal and Child Health Hospital,Wuhan,Hubei 430070,China)

机构地区:[1]湖北省妇幼保健院儿童重症医学科,湖北省武汉市430070 [2]湖北省妇幼保健院耳鼻喉科,湖北省武汉市430070

出  处:《中南医学科学杂志》2021年第6期731-734,共4页Medical Science Journal of Central South China

基  金:湖北省自然科学基金项目(ZRMS2018001671)。

摘  要:目的探讨ARIMA模型在非伤寒沙门菌发病率预测中的应用。方法以湖北省某医院2015年1月—2019年12月非伤寒沙门菌发病率数据为基础,采用时间序列方法建立模型,估计、检验模型中间的相关参数,确定最优模型,并预测2019年7月—12月非伤寒沙门菌发病率,同时对预测效果进行评价。结果通过比较,确立了最优预测模型,该模型预测值和实际值之间的稳合度较好,实际值全部在预测值95%置信区间范围中。预测2019年7月—12月非伤寒沙门菌发病率分别为3.93%、3.28%、3.56%、2.65%、1.04%、0.82%。结论ARIMA模型能较好预测非伤寒沙门菌发病率的变化趋势,模型有助于医院及疾控部门及早采取预防措施进行干预,降低传染风险。Aim To explore the application of autoregressive integrated moving average(ARIMA)model in prediction of incidence of nontyphoidal salmonella(NTS)so as to provide a scientific basis for the prevention and control of infection in pediatrics.Methods The ARIMA model was established for the month-by-month incidence of NTS in a pediatric inpatient ward from Jan 2015 to Dec 2018 in Hubei Maternal and Child Health Hospital,the data of the first half of 2019 were used to verify the predicted results,and the incidence of NTS in the second half of 2019 was predicted.Results The optimal model that was established based on the data of incidence of NTS.The fitted value of the model tended to be identical with the actual value,all the actual values were within the 95%confidence interval of the fitted value.From July 2019 to December 2019,the predicted values of the incidence of nontyphoid salmonella were 3.93%,3.28%,3.56%,2.65%,1.04%,0.82%.Conclusion The ARIMA model can well fit and predict the incidence of NTS in hospitals,which can provide a scientific basis for prevention and treatment of NTS infection.

关 键 词:非伤寒沙门菌 发病率 ARIMA模型 预测 

分 类 号:R725.7[医药卫生—儿科]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象