Shearlet域基于非局部均值的地震信号去噪  被引量:7

Denoising of seismic signals based on non-local mean in Shearlet domain

在线阅读下载全文

作  者:李民 周亚同 李梦瑶 翁丽源 LI Min;ZHOU Yatong;LI Mengyao;WENG Liyuan(School of Electronics and Information Engineering,Hebei University of Technology,Tianjin 300401,P.R.China)

机构地区:[1]河北工业大学电子信息工程学院,天津300401

出  处:《重庆大学学报》2021年第11期101-114,共14页Journal of Chongqing University

基  金:河北省自然科学基金资助项目(F2019202364);河北省引进留学人员资助项目(CL201707);教育部春晖计划资助项目(Z2017015)。

摘  要:由于采集环境及仪器性能的限制,采集的地震信号中含有较强的随机噪声,对后续的处理和解释带来很大困难。多尺度几何分析近年来受到关注,在Shearlet变换域中引入非局部均值(NLM,non-local mean algorithm)算法对地震信号进行去噪,该算法首先对地震信号进行非下采样Shearlet变换,对近似服从广义高斯分布的Shearlet系数进行主成分分析(PCA,principal component analysis),然后采用非局部均值处理Shearlet系数,最后对新的Shearlet系数进行Shearlet反变换,得到去噪之后的地震信号。实验结果表明,文中算法在低噪声情况下能够获得优于非局部均值算法的去噪效果,对地震信号去噪具有可行性。Due to the limitations of the acquisition environment and instrument performance,the collected seismic signals contain strong random noise,which presents great challenges for subsequent processing and interpretation.Multi-scale geometric analysis has attracted attention in recent years.This paper introduces non-local mean algorithm(NLM)into the Shearlet transform domain to denoise seismic signals.The algorithm firstly performs non-subsampled Shearlet transform on seismic signals,and approximates the generalized Gaussian distribution.The Shearlet coefficients are subjected to principal component analysis(PCA),and then the non-local mean processing Shearlet coefficients are used.Finally,the new Shearlet coefficients are inversely transformed by Shearlet to obtain the denoised seismic signals.The experimental results show that under low noise the proposed algorithm can achieve better denoising effect than the non-local mean algorithm.Therefore,the proposed algorithm is feasible for denoising seismic signals.

关 键 词:多尺度几何分析 SHEARLET变换 非局部均值 地震信号去噪 

分 类 号:P316[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象