自适应非局部均值滤波与小波相结合的脑部CT去噪研究  被引量:1

Denoising Research of Brain CT Based on Adaptive Non-Local Mean Filtering and Wavelet

在线阅读下载全文

作  者:张爱桃 陈小茜 肖雨 郭东敏 周旭 李连捷 ZHANG Aitao;CHEN Xiaoxi;XIAO Yu;GUO Dongmin;ZHOU Xu;LI Lianjie(School of Medical Imaging,Hebei Medical University,Shijiazhuang Hebei 050017,China)

机构地区:[1]河北医科大学医学影像学院,河北石家庄050017

出  处:《中国医疗设备》2021年第12期73-77,共5页China Medical Devices

基  金:河北省卫生和计划生育委员会科研基金项目(201904);河北省医学科学研究课题计划项目(20200862)。

摘  要:目的利用非局部均值滤波与小波相结合的算法,抑制脑部CT图像噪声,提高图像的质量。方法通过仿真实验确定不同噪声水平下的滤波系数,然后采用真实的含噪脑CT图像进行验证,并与传统非局部均值滤波进行比较。最后采用配对t检验,对该方法滤波前后的图像峰值信噪比进行统计学分析。结果该方法能够使含有白噪声的CT图像的峰值信噪比提高5~10 dB,高出传统非局部均值滤波后图像3~5 dB。滤波前后的图像峰值信噪比具有统计学差异(P<0.001)。结论结合小波的自适应非局部均值滤波可以对不同噪声水平的脑CT图像进行自适应处理,有效去除噪声,提高峰值信噪比,同时保留图像的细节及边缘,改善图像质量。Objective To suppress the noise and improve the quality of brain CT image by the method based on a combination of non-local mean filtering and wavelet.Methods Experiments were conducted on simulation data to estimate the filtering parameters under different noise levels and the brain CT image from human subjects to demonstrate the validity of the proposed theory.The effect was compared with the traditional non-local mean filtering.Finally,the peak signal to noise ratio(PSNR)of the image before and after filtering was statistically analyzed by paired t test.Results This method can increase the PSNR of the CT image with white noise by 5~10 dB,which was 3~5 dB higher than the traditional non-local mean filtered image.The PSNR of the image before and after filtering was statistically different(P<0.001).Conclusion The method based on a combination of non-local mean filtering and wavelet can process the brain CT images with different noise levels adaptively,effectively suppress noise,improve PSBR,while retaining image details and edges,and improving image quality.

关 键 词:脑CT图像 图像去噪 自适应非局部均值滤波 小波噪声方差估计 

分 类 号:R815[医药卫生—放射医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象