检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝霖霖 HAO Linlin(Department of Physical Education,Fudan University,Shanghai,200433 China)
机构地区:[1]复旦大学体教部,上海200433
出 处:《当代体育科技》2021年第32期1-8,共8页Contemporary Sports Technology
基 金:教育部人文社会科学研究(18YJC890007)。
摘 要:该文利用K-means聚类算法和BP神经网络对大学生体质类型进行评价,验证BP神经网络评价大学生体质类型的可行性。K-means聚类分析结果表明,大学男生和女生体质均可分为八类,不同类型具有不同的体质特点。利用聚类分析数据训练BP神经网络,建立体质评价模型,其精确度达到94%以上,能够较为准确地判断大学生的体质类型,可以作为自动化、精准化评价大学生体质类型的基础算法。In this paper,K-means clustering algorithm and BP neural network are used to evaluate the physique types of college students,and to verify the feasibility of BP neural network to evaluate the physique types of college students.The results of K-means cluster analysis show that the physique of male college students can be divided into eight categories,and that of female college students can be divided into eight categories.Different types have different physical characteristics.The BP neural network is trained by clustering analysis data,and the fitness evaluation model is established.The accuracy is more than 94%,which can be used as the basic algorithm for automatic and accurate evaluation of college students'fitness type.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240