检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏可 郭学俊 杨莹 陈泽华 Su Ke;Guo Xuejun;Yang Ying;Chen Zehua(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China;College of Data Science,Taiyuan University of Technology,Jinzhong 030600,China;Shanxi Transportation Technology Research and Development Co.,Ltd.,Taiyuan 030006,China)
机构地区:[1]太原理工大学电气与动力工程学院,山西太原030024 [2]太原理工大学大数据学院,山西晋中030600 [3]山西省交通科技研发有限公司,山西太原030006
出 处:《电子技术应用》2021年第12期64-68,99,共6页Application of Electronic Technique
基 金:山西交通控股集团有限公司重点研发科技项目(19-JKKJ-2);国家自然科学基金(11305115)。
摘 要:在自动检测中,由于道路损伤数据集存在小目标损伤难检测与类别不平衡问题,导致道路损伤检测的准确率低、虚假率高。为此,在DSSD(Deconvolutional Single Shot Detector)网络模型的基础上,提出一种结合注意力机制和Focal loss的道路损伤检测算法。首先,采用识别精度更高的ResNet-101作为DSSD模型的基础网络;其次,在ResNet-101主干网络中添加注意力机制,采用通道域注意力和空间域注意力结合的方式,实现特征在通道维度上的加权与空间维度上的聚焦,提升对小目标道路损伤的检测效果;最后,为了减少简单样本的权重,增大难分类样本的权重,使用Focal loss来提高整体的检测效果。在Global Road Damage Detection Challenge比赛所提供的数据集上进行验证,实验结果表明,该模型的平均精度均值为83.95%,比基于SSD和YOLO网络的道路损伤检测方法的准确率更高。In the automatic detection,the road damage data set has the problems of difficult detection of small target damage and imbalance of categories,resulting in low accuracy and high false rate of road damage detection.For this reason,based on the DSSD(deconvolutional single shot detector)network model,a road damage detection algorithm combining attention mechanism and Focal loss is proposed.First of all,ResNet-101 with higher recognition accuracy is used as the basic network of the DSSD model.Secondly,an attention mechanism is added to the ResNet-101 backbone network,and the channel domain attention and spatial domain attention are combined to achieve the weighting of features in the channel dimension and the focus on the spatial dimension,and improve the detection effect of small target road damage.Finally,in order to reduce the weight of simple samples and increase the weight of difficult-to-classify samples,Focal loss is used to improve the overall detection effect.It is verified on the data set provided by the Global Road Damage Detection Challenge competition.The experimental results show that the average accuracy of the model is 83.95%,which is more accurate than the road damage detection method based on SSD and YOLO network.
关 键 词:道路损伤检测 DSSD目标检测算法 小目标检测 注意力机制 类别不平衡 焦点损失函数
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147