基于IGWO-GRNN的室内3D定位算法  被引量:1

Indoor 3D location algorithm based on IGWO-GRNN

在线阅读下载全文

作  者:高媛[1] 阳媛 王鸿磊 GAO Yuan;YANG Yuan;WANG Hong-lei(School of Information Engineering,Xuzhou College of Industrial Technology,Xuzhou 221000,China;School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221000,China)

机构地区:[1]徐州工业职业技术学院信息工程学院,江苏徐州221000 [2]东南大学仪器科学与工程学院,江苏南京210096 [3]中国矿业大学信息与控制学院,江苏徐州221000

出  处:《计算机工程与设计》2021年第12期3461-3468,共8页Computer Engineering and Design

基  金:国家自然科学基金青年基金项目(61601123);徐州市科技发展基金项目(KC17132)。

摘  要:为解决基于相对位置的定位算法易受环境干扰,定位精度不高的问题,提出一种基于改进灰狼算法-广义回归神经网络(IGWO-GRNN)的室内3D定位算法。利用GRNN建立3D定位模型,通过IGWO优化平滑因子,将待测节点与信标节点间的信号强度值作为神经网络的输入,神经网络的输出即为待测节点的真实三维坐标。将仿真结果与其它算法进行比较,验证了所提算法的定位精度与收敛速度均优于其它算法。To solve the problems that the location algorithm based on relative position is easy to be interfered by environment and the positioning accuracy is not high,an indoor 3D positioning algorithm based on improved gray wolf algorithm-generalized regression neural network(IGWO-GRNN)was proposed.The 3D positioning model was established using GRNN,and the smoothing factor was optimized using IGWO.The signal strength value between the node to be tested and the beacon node was taken as the input of the neural network,and the output of the neural network was the real three-dimensional coordinates of the node to be tested.Comparing the simulation results with other algorithms,it is verified that the positioning accuracy and convergence speed of the proposed algorithm are better than that of other algorithms.

关 键 词:灰狼算法 广义回归神经网络 3D定位 平滑因子 信号强度 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象