检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵明岩 林敏 徐鹏 王勇金 宋天月 梁明轩 胡剑虹 Zhao Mingyan;Lin Min;Xu Peng;Wang Yongjin;Song Tianyue;Liang Mingxuan;Hu Jianhong(College of Mechanical and Electronical Engineering,China Jiliang University,Hangzhou 310018,China;College of Science,China Jiliang University,Hangzhou 310018,China)
机构地区:[1]中国计量大学机电工程学院,杭州310018 [2]中国计量大学理学院,杭州310018
出 处:《农业工程学报》2021年第19期276-283,共8页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金(51876196);国家自然科学基金青年基金(51705494、51605462)。
摘 要:为解决哈密瓜雕刻速度慢、花瓣大小不一致等问题,该研究提出了一种基于三维重构的哈蜜瓜均瓣雕花算法。对多角度拍摄得到的哈蜜瓜照片进行滤波处理,提取其图像特征并进行稀疏重建,通过点云坐标得出哈蜜瓜的特征参数;接着在稀疏点的基础上利用CMVS/PMVS算法进行稠密重建;最后调节八叉树算法与泊松表面重建,得到哈密瓜精确三维空间坐标。根据哈密瓜体型特征及设定花瓣数量,将点云三角网格化在深度优先算法的基础上结合粒子群算法,规划雕刻起点、终点及雕刻深度,使每个花瓣体积相同。采用48个哈密瓜,雕刻花瓣数取15~30,雕刻深度为1.5、2.0、2.5 cm。其中切割花瓣数为28这一组精度最低,测得最大与最小花瓣体积分别为3.40与3.25 cm^(3),最大体积差为0.15 cm^(3),误差小于5%。结果表明,该研究提出的基于三维重构的哈蜜瓜均瓣雕花算法精度高,研究结果可为机器人雕刻哈密瓜提供技术支持。Higher carving speed and uniform petal size of Hami melon are critical for the robot carving Hami melon. It is very necessary to plan the cutting path of the execution terminal(carving knife) in real-time, according to the three-dimensional coordinates of different processing objects. In this study, a uniform petal carving of Hami melon was proposed using point cloud splicing. The image features were extracted and reconstructed sparsely. The feature parameters of melon were firstly obtained by point cloud coordinates. Secondly, CMVS/PMVS algorithm was selected for dense reconstruction using the sparse points. Finally, the octree and Poisson surface reconstruction were used to obtain the accurate 3D spatial coordinates of melon.Different shapes of Hami melon was led to different reconstructions. Each piece of flesh presented the same volume after carving. The specific procedure was as follows. Firstly, the cutting height and depth of melon were determined to extract the point cloud. An arc function was then fitted to determine the center of the circle, according to the point cloud of the outermost circle of Hami melon. The number of carving petals was divided 360° to determine the pre carving start point, end point, and path. Specifically, the initial triangle was formed to search for the two closest points from any point in the numerous point clouds as the benchmark, and then to expand the triangle outward with the three sides of the triangle as the baseline, where the equal volume of each petal was taken as the objective function, while the equal cutting depth and cutting angle of each petal as the limiting conditions. Until all the point clouds were included in the three-dimensional triangle network, the area of the projected triangle was calculated by the Helen formula, where the average value for the Z coordinates of three projected points was taken as the height, and then to calculate the volume of the triangular pyramid. After depth-first and particle swarm optimization, the optimal solution was found in t
关 键 词:图像处理 粒子群算法 三维重构 均瓣雕花 点云拼接 三角网格化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43