检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓燕 李弢 马尽文[1] LI Xiaoyan;LI Tao;MA Jinwen(Department of Information and Computational Sciences,School of Mathematical Sciences and LMAM,Peking University,Beijing 100871,China)
机构地区:[1]北京大学数学科学学院信息与计算科学系,数学及其应用教育部重点实验室,北京100871
出 处:《信号处理》2021年第11期2031-2040,共10页Journal of Signal Processing
基 金:科技部国家重点研发计划项目《“互联+”煤矿安全监管监察关键技术研发与示范》课题“基于大数据的区域煤矿安全态势智能分析与预警技术”项目(2018YFC0808305)。
摘 要:高斯过程回归是机器学习中解决非线性回归的一种典型回归方法。然而,单一的高斯过程难以拟合非平稳、多模态的时序数据。另外,在实际应用中需要预测的输入数据会受到噪声的干扰。为了克服这些问题,本文提出了含噪输入预测策略下的高斯过程混合回归预测方法(niMGP),并针对煤矿瓦斯浓度数据进行了参数学习和柔性预测。与其他传统回归方法相比,这种柔性预测方法是在测试输入数据具有噪声干扰的情况下进行预测,使其结果更为鲁棒和准确。本文首先通过模拟实验验证了在具有固定信噪比的测试输入数据上,高斯过程混合模型在含噪输入预测策略下的回归结果在稳定性上优于其传统预测策略下的回归结果。本文进一步选取松藻煤矿中打通一矿的333944号传感器获取的实际瓦斯浓度数据片段,对其进行了适当的数据增强之后,通过实际数据的实验进一步表明,高斯过程混合模型采用含噪输入预测策略在数据回归分析的预测上相比传统预测策略具有更好的稳定性。实际中还可以通过调节测试输入数据中噪声分布的方差来调节预测的灵敏度,达到分级预警的效果。Gaussian process regression is a typical nonlinear regression method in machine learning.However,it is rather difficult for a single Gaussian process to fit non-stationary and multi-modal series data.In addition,test input data may be interfered by noise.In order to overcome these problems,this paper proposes a regression method of mixture of Gaussian processes with the noisy input prediction strategy(niMGP),which is further implemented to perform a kind of soft prediction on coal mine gas concentration data.In comparison with traditional regression methods,this method adopts a noise into the test input data so that the prediction results become more robust and accurate.It is firstly demonstrated by simulation experiments that on a synthetic noisy test data with a fixed signal-to-noise ratio,the regression results of mixture of Gaussian processes with the noisy input prediction strategy is better than those with traditional prediction strategy in terms of stability.It is further demonstrated on the actual gas concentration dataset from the fragments recorded by No.333944 sensor in Songzao Coal Mine with appropriate data enhancements that the noisy input prediction strategy is more stable than traditional prediction strategy.In practice,the prediction sensitivity can also be adjusted by adjusting the distribution variance of noise added to the test input data to achieve the effect of hierarchical warning.
关 键 词:高斯过程混合模型 含噪输入策略 瓦斯浓度预测 机器学习 噪声干扰
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222