检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴金玲 许爱强 于超 吴阳勇 DAI Jinling;XU Aiqiang;YU Chao;WU Yangyong(Naval Aviation University,Yantai 264001,China;92313 troops of PLA,Jiyuan 454650,China)
机构地区:[1]海军航空大学,烟台264001 [2]中国人民解放军92313部队,济源454650
出 处:《北京航空航天大学学报》2021年第11期2277-2286,共10页Journal of Beijing University of Aeronautics and Astronautics
摘 要:针对当前飞机发动机状态预测过程中,不考虑相关变量状态变化,仅根据单变量历史时间序列对飞机发动机状态预测的问题,提出一种基于多元核极限学习机(KELM)的发动机状态在线预测模型。首先,通过多变量时间序列的相空间重构,将变量间的时间相关性转化为空间相关性;其次,通过研究KELM与核递归最小二乘法(KRLS)之间的关系,将KRLS扩展到在线稀疏KELM框架中;最后,使用近似线性依赖对样本进行稀疏化来控制网络结构的增长,最终实现多变量非平稳序列的在线预测。某型教练机的发动机飞行参数预测结果表明:满足在线预测要求的条件下,与KB-IELM、NOS-KELM、FF-OSKELM相比,模型KRLSELM将平均预测精度提高了90.61%、58.14%和25.77%,将预测稳定性提高了99.61%、75.03%和28.59%,具有更高的预测精度和稳定性;并且各方法均在多变量输入条件下获得最优的预测效果,验证了考虑多变量状态因素对单变量的在线预测具有重要意义。In order to solve the problem that the state changes of only one variable instead of related variables are considered in the process of aircraft engine condition prediction,an online prediction model of the state of engine based on multivariate Kernel Extreme Learning Machine(KELM)is proposed.First,the phase space reconstruction of multivariable time series is used to transform the temporal correlation into the spatial correlation.Then,by studying the relationship between KELM and the Kernel Recursive Least Squares(KRLS),KRLS is extended into the online sparse KELM framework.Finally,the samples are made sparse by using approximate linear dependence to control the growth of network structure,and ultimately online prediction of multivariable nonstationary series is realized.The prediction results of engine flight parameters of a certain trainer show that,compared with KB-IELM,NOS-KELM and FF-OSKELM in the premise of online prediction,the prediction accuracy is decreased by 90.61%,58.14%and 25.77%respectively,and the prediction stability is decreased by 99.61%,75.03%and 28.59%respectively,with higher prediction accuracy and stability.All methods get best results with multivariate inputs,which also proves thatthe consideration of multivariable state factors is of great significance to the online prediction of single variable as well.
关 键 词:核极限学习机 多变量时间序列 核自适应滤波 相空间重构 稀疏化
分 类 号:V243[航空宇航科学与技术—飞行器设计] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249